Как называется метод моделирования сложных форм. Моделирование систем

Предисловие....................................................................................... 5

1...... МОДЕЛИ РЕШЕНИЯ ФУНКЦИОНАЛЬНЫХ И ВЫЧИСЛИТЕЛЬНЫХ ЗАДАЧ 3

1.1... Моделирование как метод познания. 3

1.2... Классификация моделей. 6

1.3... Компьютерное моделирование. 8

1.4... Информационные модели. 9

1.5... Примеры информационных моделей. 10

1.6... Базы данных. 11

1.7... Искусственный интеллект. 13

1.8... Вопросы и тестовые задания для самоконтроля. 14

2...... МОДЕЛИРОВАНИЕ И ПРИНЯТИЕ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ 16

2.1... Принятие и реализация управленческих решений. 16

2.2... Процесс моделирования. 16

2.3... Роль менеджера в моделировании. 17

2.4... Этапы моделирования при принятии управленческих решений. 20

3...... СРЕДСТВА АНАЛИЗА «ЧТО ЕСЛИ». 21

3.1... Общие сведения о средствах анализа. 21

3.2... Использование сценариев для анализа нескольких различных переменных 21

3.2.1 Общие сведения о сценариях. 21

3.2.2 Создание сценария. 22

3.2.3 Просмотр сценария. 23

3.2.4 Создание итогового отчета по сценариям. 23

3.3... Использование средства подбора параметров для поиска способов получения необходимого результата. 24

3.4... Использование таблиц данных для изучения влияния одной или двух переменных на формулу. 24

3.4.1 Общие сведения о таблицах данных. 24

3.4.2 Таблицы данных с одной переменной. 26

3.4.3 Создание таблицы данных с двумя переменными. 27

3.5... Подготовка прогнозов и сложных бизнес-моделей. 28

4...... ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ И ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ «ПОИСК РЕШЕНИЯ». 29

4.1... Пример вычисления с помощью «Поиска решения». 29

4.2... Формализация моделей линейного программирования. 30

4.3... Представление модели линейного программирования в электронных таблицах 35



4.4... Использование надстройки Поиск решения. 36

4.5... Графический метод решения задачи линейного программирования с двумя переменными. 39

5...... АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ.. 40

5.1... Теоретические основы.. 40

5.2... Линейная регрессия. 44

5.3... Примеры использования функций ЛИНЕЙН и ТЕНДЕНЦИЯ.. 46

5.3.1 Функция ТЕНДЕНЦИЯ.. 46

5.3.2 Простая линейная регрессия. 48

5.3.3 Множественная линейная регрессия. 49

6...... ВЕРОЯТНОСТНЫЕ МОДЕЛИ.. 51

6.1... Модели принятия решений в условиях определённости, риска и неопределённости 51

6.2... Моделирование киоска. 52

7...... ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. 56

7.1... Понятие имитационного моделирования. 56

7.2... Имитационное моделирование на примере киоска. 58

8...... ОСНОВНЫЕ ПОНЯТИЯ БАЗ ДАННЫХ.. 62

8.1... Задачи, решаемые с помощью баз данных. 62

8.2... Классификация БД.. 64

8.3... Реляционная модель данных. 65

8.4... Свойства полей базы данных. 67

8.5... Типы данных. 68

8.6... Безопасность и объекты баз данных. 69

8.7... Вопросы и тестовые задания для самоконтроля. 72

9...... МОДЕЛИ БИЗНЕС-ПРОЦЕССОВ. MЕТОДОЛОГИЯ IDEF. 73

9.1... Понятие бизнес-процесса. 74

9.2... Понятие о стандарте моделирования бизнес-процессов IDEF. 75

9.3... Моделирование бизнес-процессов нотации IDEF0 в Visio. 78

9.3.1 Создание диаграммы бизнес-процесса. 78

ЗАКЛЮЧЕНИЕ. 88

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 90


МОДЕЛИ РЕШЕНИЯ ФУНКЦИОНАЛЬНЫХ И ВЫЧИСЛИТЕЛЬНЫХ ЗАДАЧ

Моделирование как метод познания

В повседневной жизни, на производстве, в научно-исследовательской, инженерной или любой другой деятельности человек постоянно сталкивается с решением задач. Все задачи по своему назначению можно разделить на две категории: вычислительные задачи, целью которых является определение некоторой величины, и функциональные задачи, предназначенные для создания некого аппарата, выполняющего определённые действия – функции.

Например, проектирование нового здания требует решения задачи расчёта прочности его фундамента, несущих опорных конструкций, расчёта финансовых затрат на строительство, определение оптимального числа работников и т.д. Для повышения производительности труда строителей создано немало машин функционального назначения (решены функциональные задачи), такие как экскаватор, бульдозер, подъёмный кран и др.

Компьютеры первого и второго поколения использовались в основном для решения вычислительных задач: проведения инженерных, научных, финансовых расчётов. Начиная с третьего поколения, область применения ЭВМ включает и решение функциональных задач: это ведение баз данных, управление, проектирование. Современный компьютер может использоваться для решения практически любых задач.

Человеческая деятельность и, в частности, решение задач неразрывно связаны с построением, изучением и использованием моделей различных объектов, процессов и явлений. В своей деятельности – в практической сфере, художественной, научной – человек всегда создаёт некий слепок, заменитель того объекта, процесса или явления, с которым ему приходится иметь дело. Это может быть картина, чертёж, скульптура, макет, математическая формула, словесное описание и др.

Объектом (от лат. objectum – предмет) называется всё то, что противостоит субъекту в его практической и познавательной деятельности, всё то, на что направлена эта деятельность. Под объектами понимаются предметы и явления, как доступные, так и недоступные чувственному восприятию человека, но имеющие видимое влияние на другие объекты (например, гравитация, инфразвук или электромагнитные волны). Объективная реальность, существующая независимо от нас, является объектом для человека в любой его деятельности и взаимодействует с ним. Поэтому объект всегда должен рассматриваться во взаимодействии с другими объектами, с учётом их взаимовлияния.

Деятельность человека обычно идёт по двум направлениям: исследование свойств объекта с целью их использования (или нейтрализации); создание новых объектов, имеющих полезные свойства. Первое направление относится к научным исследованиям и большую роль при их проведении имеет гипотеза , т.е. предсказание свойств объекта при недостаточной его изученности. Второе направление относится к инженерному проектированию. При этом важную роль играет понятие аналогии – суждении о каком-либо сходстве известного и проектируемого объекта. Аналогия может быть полной или частичной. Это понятие относительно и определяется уровнем абстрагирования и целью построения аналогии.

Моделью (от лат. modulus – образец) какого-либо объекта, процесса или явления называется заменитель (образ, аналог, представитель), используемый в качестве оригинала. Модель даёт нам представление реального объекта или явления в некоторой форме, отличной от формы его реального существования. Например, в разговоре мы замещаем реальные объекты их наименованиями, словами. И от замещающего имени в этом случае требуется самое основное – обозначить необходимый объект. Таким образом, мы с детства сталкиваемся с понятием «модель» (самая первая модель в нашей жизни – соска).

Модель – это мощное орудие познания. К созданию моделей прибегают, когда исследуемый объект либо очень велик (модель солнечной системы), либо очень мал (модель атома), когда процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели), исследование объекта может привести к его разрушению (учебная граната) или создание модели очень дорого (архитектурный макет города) и т.д.

Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные , свойства, те, которые интересуют исследователя. В этом главная особенность и главное назначение моделей. Таким образом, под моделью понимается некоторый объект, замещающий реальный исследуемый объект с сохранением наиболее существенных его свойств.

Не бывает просто модели, «модель» – это термин, требующий уточняющего слова или словосочетания, например: модель атома, модель Вселенной. В каком-то смысле моделью можно считать картину художника или театральный спектакль (это модели, отражающие ту или иную сторону духовного мира человека).

Исследование объектов, процессов или явлений путём построения и изучения их моделей для определения или уточнения характеристик оригинала называется моделированием . Моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путём проведения экспериментов с его моделью. Теория замещения объектов-оригиналов объектом-моделью называется теорией моделирования. Всё многообразие способов моделирования, рассматриваемого теорией моделирования, можно условно разделить на две группы: аналитическое и имитационное моделирование.

Аналитическое моделирование заключается в построении модели, основанной на описании поведения объекта или системы объектов в виде аналитических выражений – формул. При таком моделировании объект описывается системой линейных или нелинейных алгебраических или дифференциальных уравнений, решение которых может дать представление о свойствах объекта. К полученной аналитической модели, с учётом вида и сложности формул применяются аналитические или приближённые численные методы. Реализация численных методов обычно возлагается на вычислительные машины, обладающие большими вычислительными мощностями. Тем не менее, применение аналитического моделирования ограничено сложностью получения и анализа выражений для больших систем.

Имитационное моделирование предполагает построение модели с характеристиками, адекватными оригиналу, на основе какого-либо его физического или информационного принципа. Это означает, что внешние воздействия на модель и объект вызывают идентичные изменения свойств оригинала и модели. При таком моделировании отсутствует общая аналитическая модель большой размерности, а объект представлен системой, состоящей из элементов, взаимодействующих между собой и с внешним миром. Задавая внешние воздействия, можно получить характеристики системы и провести их анализ. В последнее время имитационное моделирование всё больше ассоциируется с моделированием объектов на компьютере, что позволяет в интерактивном режиме исследовать модели самых разных по природе объектов.

Если результаты моделирования подтверждаются и могут служить основой для прогнозирования поведения исследуемых объектов, то говорят, что модель адекватна объекту. Степень адекватности зависит от цели и критериев моделирования.

Основные цели моделирования:

7. Понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание).

8. Научиться управлять объектом (процессом) и определить наилучшие способы управления при заданных целях и критериях (управление).

9. Прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Практически любой объект моделирования может быть представлен совокупностью элементов и связей между ними, т.е. являться системой, взаимодействующей с внешней средой. Система (от греч. system – целое) есть целенаправленное множество взаимосвязанных элементов любой природы. Внешняя среда представляет собой множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под её воздействием. При системном подходе к моделированию, прежде всего, чётко определяется цель моделирования. Создание модели полного аналога оригинала дело трудоёмкое и дорогое, поэтому модель создаётся под определённую цель.

Ещё раз отметим, что любая модель не является копией объекта, а отражает лишь наиболее важные, существенные черты и свойства, пренебрегая остальными характеристиками объекта, которые несущественны в рамках поставленной задачи. Например, моделью человека в биологии может являться система, стремящаяся к самосохранению; в химии – объект, состоящий из различных веществ; в механике – точка, обладающая массой. Один и тот же реальный объект может быть описан разными моделями (в разных аспектах и с разными целями). А одна и та же модель может рассматриваться как модель совершенно разных реальных объектов (от песчинки до планеты).

Никакая модель не может полностью заменить сам объект. Но при решении конкретных задач, когда нас интересуют определённые свойства изучаемого объекта, модель оказывается полезным, простым, а подчас и единственным инструментом исследования.

Классификация моделей

В зависимости от характера изучаемых процессов в системе и цели моделирования существует множество типов моделей и способов их классификации, например, по цели использования, наличию случайных воздействий, отношению ко времени, возможности реализации, области применения и др. (табл. 13).

Таблица 13

Классификация видов моделей

По способу отражения свойств объекта (по возможности реализации) модели классифицируются на предметные (реальные, материальные) и абстрактные (мысленные, информационные – в широком смысле). В узком смысле под информационными понимаются абстрактные модели, реализующие информационные процессы (возникновение, передачу, обработку и использование информации) на компьютере.

Предметные модели представлены реальными объектами, воспроизводящими геометрические, физические и другие свойства моделируемых систем в материальной форме (глобус, манекен, макет, муляж, каркас и др.). Реальные модели делят на натурные (проведение исследования на реальном объекте и последующая обработка результатов эксперимента с применением теории подобия) и физические (проведение исследования на установках с аналогичными изучаемому процессами, которые сохраняют природу явления и обладают физическим подобием).

Абстрактные модели позволяют представлять системы, которые трудно или невозможно моделировать реально, в образной или знаковой форме. Образные или наглядные модели (рисунки, фотографии) представляют собой наглядные зрительные образы, зафиксированные на материальном носителе информации (бумага, плёнка). Знаковые или символьные модели представляют основные свойства и отношения моделируемого объекта с использованием различных языков (знаковых систем), например, географические карты. Вербальные модели – текстовые – используют для описания объектов средства естественного языка. Например, правила дорожного движения, инструкция к прибору.

Математические модели – широкий класс знаковых моделей, использующих математические методы представления (формулы, зависимости) и получения исследуемых характеристик реального объекта. Назовём некоторые разновидности математических моделей. Дескриптивные (описательные) – констатируют фактическое положение дел, без возможности влияния на моделируемый объект. Оптимизационные – дают возможность подбирать управляющие параметры. Игровые – изучают методы принятия решений в условиях неполной информации. Имитационные – подражают реальному процессу.

По цели использования модели классифицируются на научный эксперимент , в котором осуществляется исследование модели с применением различных средств получения данных об объекте, возможности влияния на ход процесса с целью получения новых данных об объекте или явлении; комплексные испытания и производственный эксперимент , использующие натурное испытание физического объекта для получения высокой достоверности о его характеристиках; оптимизационные , связанные с нахождением оптимальных показателей системы (например, нахождение минимальных затрат или определение максимальной прибыли).

По наличию случайных воздействий на систему модели делятся на детерминированные (в системах отсутствуют случайные воздействия) и стохастические (в системах присутствуют вероятностные воздействия). Эти же модели некоторые авторы классифицируют по способу оценки параметров системы: в детерминированных системах параметры модели оцениваются одним показателем для конкретных значений их исходных данных; в стохастических системах наличие вероятностных характеристик исходных данных позволяет оценивать параметры системы несколькими показателями.

По отношению ко времени модели разделяют на статические , описывающие систему в определённый момент времени, и динамические , рассматривающие поведение системы во времени. В свою очередь, динамические модели подразделяют на дискретные , в которых все события происходят по интервалам времени, и непрерывные , где все события происходят непрерывно во времени.

По области применения модели подразделяют на универсальные , предназначенные для использования многими системами, и специализированные , созданные для исследования конкретной системы.

Компьютерное моделирование

Информатика имеет самое непосредственное отношение к информационным и математическим моделям, поскольку они – основа применения компьютера при решении задач различной природы. Обобщённую схему компьютерного моделирования можно представить следующим образом (рис. 8.1).

Рис. 8.1. Схема компьютерного моделирования

Основные этапы компьютерного решения задач будут подробно рассмотрены при изучении раздела «Основы алгоритмизации».

Информационные модели

Информационные модели во многих случаях опираются на математические модели, так как при решении задач математическая модель исследуемого объекта, процесса или явления неизбежно преобразуется в информационную для её реализации на компьютере. Определим основные понятия информационной модели.

Информационным объектом называется описание реального объекта, процесса или явления в виде совокупности его характеристик (информационных элементов), называемых реквизитами . Информационный объект определённой структуры (реквизитного состава) образует тип (класс), которому присваивают уникальное имя . Информационный объект с конкретными характеристиками называют экземпляром . Каждый экземпляр идентифицируется заданием ключевого реквизита (ключа). Одни и те же реквизиты в различных информационных объектах могут быть как ключевыми, так и описательными. Информационный объект может иметь несколько ключей.

Пример . Информационный объект СТУДЕНТ имеет реквизитный состав: номер (номер зачётной книжки – ключевой реквизит), фамилия, имя, отчество, дата рождения, код места обучения . Информационный объект ЛИЧНОЕ ДЕЛО: номер студента, домашний адрес, номер аттестата о среднем образовании, семейное положение, дети. Информационный объект МЕСТО ОБУЧЕНИЯ включает реквизиты: код (ключевой реквизит), наименование вуза, факультет, группа. Информационный объект ПРЕПОДАВАТЕЛЬ: код (ключевой реквизит), кафедра, фамилия, имя, отчество, учёная степень, учёное звание, должность.

Отношения , существующие между реальными объектами, определяются в информационных моделях как связи . Существует три вида связей: один к одному (1:1), один ко многим (1:М) и многие ко многим (М:М).

Связь один-к-одному определяет соответствие одному экземпляру информационного объекта X не более одного экземпляра информационного объекта Y, и наоборот.

Пример . Информационные объекты СТУДЕНТ и ЛИЧНОЕ ДЕЛО будут связаны отношением один к одному. Каждый студент имеет определённые уникальные данные в личном деле.

При связи один-ко-многим одному экземпляру информационного объекта X может соответствовать любое количество экземпляров информационного объекта Y, но каждый экземпляр объекта Y связан не более чем с одним экземпляром объекта X.

Пример . Между информационными объектами МЕСТО ОБУЧЕНИЯ и СТУДЕНТ необходимо установить связь один ко многим. Одно и то же место обучения может многократно повторяться для различных студентов.

Связь многие-ко-многим предполагает соответствие одному экземпляру информационного объекта X любого количества экземпляров объекта Y, и наоборот.

Пример . Информационные объекты СТУДЕНТ и ПРЕПОДАВАТЕЛЬ имеют связь многие ко многим. Каждый студент обучается у множества преподавателей, а каждый преподаватель учит множество студентов.

Информационные объекты могут образовывать следующие структуры: очередь – последовательная обработка; цикл; дерево; граф – общий случай.

Основные понятия об экономической системе

Система – это строго упорядоченная совокупность взаимосвязанных, взаимодействующих и взаимозависимых элементов и их частей, которые совместно обуславливают протекание определенно направленных процессов и явлений. При этом элементом называется такая составная часть системы, которая не подлежит дальнейшему членению.

Свойства систем:

1) целостность;

2) эмерджентность, заключается в наличии у системы таких свойств, которыми не обладают ее отдельные компоненты;

3) эквипотенциальность, делимость системы на части;

4) гомеостазис, стремление системы сохранять равновесие.

Классификация систем

1. По признаку изменения системы с течением времени: динамические и статические

2. По признаку взаимосвязи причин и следствий: детерминированные и стохастические (вероятностные)

3. По признаку взаимосвязи системы с внешней средой: открытые и замкнутые

4. По признаку сложности: большие (сложные) и простые

5. По признаку автономии управления: саморегулируемые и регулируемые

6. В зависимости от вида взаимосвязи между подсистемами и элементами: с прямой и обратной связью. Прямой называется связь, при которой выходное воздействие одного элемента передается на вход другого. Соответственно, обратная связь - это связь между выходом и входом какого-либо элемента.

Основные функции систем:

1. Пассивное существование в качестве материала для других систем.

2. Обслуживание систем более высокого порядка.

3. Противостояние другим системам.

4. Поглощение других систем.

5. Преобразование других систем.

Моделирование как метод исследования

Модель представляет собой условный образ исследуемого объекта. Конструирование модели начинается с накопления определенной информации, фактов поведения объектов исследования. В начале модель выступает в качестве рабочей гипотезы. Если в результате проверки модели гипотеза подтверждается, то говорят, что модель адекватна изучаемому объекту. Очевидно, что степень адекватности на практике никогда не бывает равной 100%. В этой связи модель считается хорошей (корректной), если она отображает наиболее существенные характеристики объекта, проявляет его свойства, взаимосвязи и позволяет в пределах необходимой точности предвидеть поведение изучаемого объекта.

Классификация моделей.

1. По форме представления модели делятся на: физические, символические и смешанные. К физическим относятся модели подобия и аналоговые. Символическими называются модели, в которых параметры реального объекта и отношения между ними представлены символами (семантические, математические, логистические). Смешанные модели - это человеко-машинные модели.


2. По целевому назначению выделяют: модели структуры, модели функционирования и стоимостные модели.

Модели структуры отображают связи между компонентами объекта и внешней средой и в свою очередь бывают следующих видов: канонические, внутренней структуры, иерархические. Канонические модели характеризуют взаимодействие объекта с окружающей средой через входы и выходы. Модели внутренней структуры характеризуют состав компонентов объекта и связи между ними. Модели иерархической структуры отражают членение объекта на элементы более низкого уровня.

Модели функционирования характеризуют различные процессы, протекающие как внутри изучаемого объекта, так и при взаимодействии объекта с внешней средой. Среди моделей данного вида выделяют: модели жизненного цикла, модели операций, информационные модели, процедурные модели и др. модели жизненного цикла описывают процессы существования объекта от момента зарождения до прекращения его функционирования. Модели операций, выполняемых объектом, представляют собой описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных его функций. Информационные модели отображают взаимосвязи между источниками и потребителями информации, виды информации и характер ее преобразования. Процедурные модели описывают порядок взаимодействия элементов исследуемого объекта при выполнении различных операций.

Стоимостные модели обычно сопровождают модели функционирования объекта и позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

3. В зависимости от метода работы с моделью выделяют: физические, математические и материально-абстрактные модели. Физические (материальные) модели основаны на воспроизводстве изучаемого объекта. К ним относятся макеты, тренажеры и др. Математические (абстрактные) модели описывают параметры исследуемого объекта с помощью математических символов. Материально-абстрактные (аналоговые) модели представляют собой синтез математической модели и физического образа исследуемого объекта.

Математические модели наиболее распространены в экономических исследованиях. Они подразделяются на две группы: оптимизационные и дескриптивные (описательные). Дескриптивные модели используются только для описания взаимосвязей между элементами исследуемого объекта, или самого объекта с внешней средой. Оптимизационные же позволяют из всего множества возможных решений выбрать наиболее подходящее, согласно применяемому критерию оптимальности.

Структура оптимизационной экономико-математической модели включает в себя две основные части. Во-первых, систему ограничений, которые определяют пределы, сужающие область осуществляемых приемлемых или допустимых решений и фиксируют основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта. Во-вторых, целевую функцию, которая математически связывает между собой факторы модели и ее значение определяется значениями этих величин.

Перечислим основные принципы построения экономико-математических моделей. Общие принципы системного экономико-математического моделирования вытекают из общих принципов системного анализа. Они должны дать ответы на следующие вопросы: 1) что должно быть сделано, 2) когда должно быть сделано, 3) при помощи кого должно быть сделано, 4) на основе какой информации осуществляются действия, 5) какой результат должен быть получен в итоге всех действий.

К числу основных принципов построения экономико-математических моделей относятся следующие.

1. Принцип достаточности используемой информации. Данный принцип означает, что в каждой частной модели должна использоваться только та информация, которая известна с требуемой для результатов моделирования точностью. Под известной информацией понимаются нормативные справочные данные о реальной производственной системе, имеющиеся к началу моделирования.

2. Принцип инвариантности используемой информации. Этот принцип предполагает требование того, чтобы используемая в моделях входная информация была независима от параметров моделируемой системы, которые еще не известны на данной стадии исследования.

3. Принцип преемственности моделей. Суть этого принципа сводится к тому, что каждая последующая модель не должна нарушать свойств объекта, установленных или отраженных в предыдущих моделях комплекса.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Дальневосточный государственный гуманитарный университет»

ФАКУЛЬТЕТ ЕСТЕСТВЕННЫХ НАУК, МАТЕМАТИКИ И

ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Специальность 050502.65 «Информатика»

Специализация «Организация информатизации образования»

КУРСОВАЯ РАБОТА

«Моделирование как метод познания»

Студентки 3 курса Ю.В. Ткачёвой

Научный руководитель Н.Е. Пишкова,

канд. пед. наук, доцент

Хабаровск, 2013

Введение.Теоретическое обоснование

1.

.Основные цели моделирования

.Классификация моделей

.Процесс моделирования

.Моделирование как средство экспериментального исследования.Практическая часть

.Трехмерная графика

.Gmax - суть программы

.

.Управление видами

.Камера

.

Заключение


Введение

Моделирование как познавательный прием неотделим от развития знания. Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Так, например, в курсе географии первые представления о нашей планете Земля вы получили изучая ее модель - глобус; в химии при изучении строения вещества использовали модели молекул; в кабинете биологии использовали муляжи овощей и фруктов, чтобы наглядно продемонстрировать особенности их сортов.

Вообще, какую бы жизненную задачу ни взялся решать человек, первым делом он строит модель - иногда осознанно, а иногда и нет. Ведь бывает так - вы напряженно ищете выход из трудной ситуации, пытаясь нащупать, за что можно ухватиться. Через какое-то время ваш мозг выдает решение проблемы. Это сработало свойство нашего разума - умение безотчетно уловить самое важное, превратить информационный хаос в стройную модель стоящей перед человеком задачи. Построение моделей для человека так же естественно, как ходьба или умение пользоваться ножом и вилкой.

Модели играют чрезвычайно важную роль в проектировании и создании различных технических устройств, машин и механизмов, зданий, электрических цепей и т.д. Без предварительного создания чертежей невозможно изготовить даже простую деталь, не говоря уже о сложном механизме.

Все художественное творчество фактически является процессом создания моделей. Например, такой литературный жанр, как басня, переносит реальные отношения между людьми на отношения между животными и фактически создает модели человеческих отношений.

Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Однако моделирование как специфическое средство и форма научного познания не является изобретением XIX или XX века.

Достаточно указать на представления Демокрита и Эпикура об атомах, их форме, и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных веществ с помощью представления о круглых и гладких или крючковатых частицах, сцепленных между собой. Эти представления являются прообразами современных моделей, отражающих ядеpно-электpонное строение атома вещества.

По существу, моделирование как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Однако в отчётливой форме (хотя без употребления самого термина) моделирование начинает широко использоваться в эпоху Возрождения. Брунеллески, Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений, в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода моделирования.

И. Ньютон пользуется этим методом уже вполне осознанно, а в XIX веке трудно назвать область науки или её приложений, где моделирование не имело бы существенного значения, исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла, Ф.А. Кекуле, А.М. Бутлерова и других физиков и химиков - именно эти науки стали, можно сказать, классическими «полигонами» метода моделирования.

ХХ век принес методу моделирования новые успехи, но одновременно поставил его перед серьезными испытаниями. С одной стороны, развивающийся математический аппарат обнаружил новые возможности и перспективы этого метода в раскрытии общих закономерностей и структурных особенностей систем различной физической природы, принадлежащих к разным уровням организации материи, формам движения. С другой же стороны, теория относительности и, в особенности, квантовая механика, указали на неабсолютный, относительный характер механических моделей, на трудности, связанные с моделированием.

Появление первых электронных вычислительных машин (Джон фон Нейман, 1947) и формулирование основных принципов кибернетики (Норберт Винер, 1948) привели к поистине универсальной значимости новых методов - как в абстрактных областях знания, так и в их приложениях.

В конце 40-х годов в нашей стране кибернетика подвергалась массированным атакам. В литературе, в том числе и в учебных пособиях, утверждалось, что это реакционная лженаука, поставленная на службу империализму, которая пытается заменить мыслящего, борющегося человека машиной в быту и на производстве, используется для разработки электронного оружия, и т.п.

Реабилитация кибернетики произошла благодаря стараниям ряда крупных ученых, прежде всего А.А. Ляпунова, отстаивавших правомерность и материалистичность кибернетического взгляда на мир. Вслед за учеными эту задачу взяли на себя профессиональные философы (Баженов, Бирюков, Новик, Жуков и другие). Это тем более важно подчеркнуть, так как многие направления в науке еще долго оставались под идеологическим запретом (например, генетика). Во время «оттепели» стала интенсивно развиваться и та область кибернетики, которая впоследствии была осознана как проблематика систем искусственного интеллекта.

Моделирование ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе.

Многочисленные факты, свидетельствующие о широком применении метода моделирования в исследованиях, некоторые противоречия, которые при этом возникают, потребовали глубокого теоретического осмысления данного метода познания, поисков его места в теории познания.

Этим можно объяснить большое внимание, которое уделяется философами различных стран этому вопросу в многочисленных работах.

I. Теоретическое обоснование

1.Гносеологическая специфика модели и ее определение

На сегодняшний момент нет устоявшейся общепринятой точки зрения на место моделирования среди методов познания. Множество мнений исследователей, занимающихся данным вопросом, тем не менее, укладываются в некоторую область, ограниченную двумя полярными мнениями. Одно из них рассматривает моделирование как некий вторичный метод, подчиненный более общим (менее радикальный вариант той же по сути позиции - моделирование рассматривается исключительно как разновидность такого эмпирического метода познания, как эксперимент). Другое же, наоборот, называет моделирование «главным и основополагающим методом познания», в подтверждение приводится тезис, что «всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо».

Главной причиной возникновения столь различных позиций есть отсутствие общепринятого и устоявшегося в науке определения моделирования. Ниже приводятся попытки проанализировать несколько определений термина «моделирование» и непосредственно связанного с ним термина «модель». Это вполне оправдано, так как подавляющее большинство источников определяют моделирование как «исследование процессов, явлений и систем объектов через построение и изучение их моделей». То есть наибольшую сложность представляет проблема определения модели.

Сперва выделим определение, которое предлагает Оксфордский Толковый Словарь. В нем приведено семь определений понятия «модель», из которых наибольший интерес представляют два: «Модель - трехмерное представление субъекта, вещи или структуры, обычно в уменьшенном масштабе» и «Модель - упрощенное описание некоей системы для дальнейших расчетов». Иными словами, авторам не удается выделить настоящие существенные признаки модели и они предлагают различные определения для различных видов моделей (отметим, что первое оксфордское «определение» описывает достаточно узкий класс предметных моделей, а второе лежит где-то в плоскости абстрактно-знаковых моделей). Основная ошибка данных определений - их узость, объем понятия «модель» неизмеримо больше, чем предлагаемый авторами словаря.

Сходная проблема (только в менее значительных масштабах) возникает и при анализе определения «модели» в Советском Энциклопедическом Словаре (СЭС). Модель авторами рассматривается двояко. В узком смысле - это «устройство, воспроизводящее, имитирующее строение и действие какого-либо другого (моделируемого) устройства в научных, производственных или практических целях». Опять-таки слово «устройство», встречающееся в определении автоматически приводит к сужению понятия «модель» как минимум до понятия «материальная модель». Тем не менее, это определение представляет собой гораздо большую ценность, чем первое определение оксфордского словаря, так как содержит внутри себя чрезвычайно важную (как будет показано далее) формулировку, раскрывающую сущность моделирования - «строение и действие».

Второе определение СЭС («Модель - любой образ какого-либо объекта, процесса, явления, используемый в качестве его заместителя или представителя), наоборот, является слишком широким. Сложно предположить, что снимок ядерного взрыва может служить моделью самого взрыва. В данном случае, авторы в стремлении к краткому, но емкому определению принесли в жертву сущность понятия «модель». Данное определение отражает скорее внешние признаки, которыми обладает модель, но не её внутреннее содержание. Однако рациональное зерно есть и в этом определении - за словом «образ» угадывается более важное (с философской точки зрения) понятие - «отражение».

Ещё одно определение «модели» приведено в учебнике: «Модель является представлением объекта в некоторой форме, отличной от формы его реального существования». Фактически, оно почти совпадает с «широким» определением СЭС, но и здесь авторы заменяют слово «отражение» синонимичным оборотом. Кроме того, использование термина «объект» может быть оправдано в рамках школьного (но не вузовского) учебника, но неприемлемо для полного определения. Современная наука занимается изучением не столько отдельных самостоятельных элементов, сколько их взаимодействий. Потому более оправдано использование в определении термина «система», который вбирает в себя как отдельные элементы, так и их отношения и связи. В целом же, последние два определения можно признать вполне удовлетворительными и пользоваться ими.

Дальнейший путь развития и улучшения определений связан с целями метода моделирования. Большинство исследователей выделяют три:

.Понимание устройства конкретной системы, её структуры, свойств, законов развития и взаимодействия с окружающим миром

.Управление системой, определение наилучших способов управления при заданных целях и критериях

.Прогнозирование прямых и косвенных последствий реализации заданных способов и форм воздействия на систему

Все три цели подразумевают в той или иной степени наличия механизма обратной связи, то есть необходима возможность не только переноса элементов, свойств и отношений моделируемой системы на моделирующую, но и наоборот.

В таком случае, определение моделирования может быть сформулировано так: «Моделирование - это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система:

) находящаяся в некотором объективном соответствии с познаваемым объектом;

) способная замещать его в определенных отношениях;

) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте»

Три перечисленных признака по сути, являются определяющими признаками модели.

Данное определение, принадлежащее И.Б. Новику и А.А. Ляпунову, по моему мнению, является лучшим из существующих, поэтому в данной работе я буду придерживаться и опираться на него. Единственное заключается в том, что я рассматриваю систему «объект-система», вместо «система-система». Данный недочет вполне простителен, так как определение дано более 50 лет назад, когда уровень науки отличался от современного и теория систем находилась в стадии становления.

Для сравнения приведем ещё два, более современных, определения «модели». Определение И.Т. Фролова: «Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы». Здесь в основе мысль, что модель -средство познания, главный ее признак - отображение. В западной философии эталонным является определение, которое дает В.А. Штофф в своей книге «Моделирование и философия»: «Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте». Оно практически полностью совпадает с определением Новика-Ляпунова, но имеет один недостаток - в определении не содержится указаний на относительный характер модели.

Пpи дальнейшем рассмотрении моделей и процесса моделирования будем исходить из того, что общим свойством всех моделей является их способность, так или иначе, отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.

.Основные цели моделирования

1)Прогноз - оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз - главная цель моделирования.

)Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетанная факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

)Часто модель создается для применения в качестве средства обучения: модели-тренажеры, стенды, учения, деловые игры и т.п.

Наш знаменитый механик И.П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н.Л. Кирпичев, моделированию в авиастроении - М.В. Келдыш, С.В. Ильюшин, А.Н. Туполев и др., моделированию ядерного взрыва - И.В. Курчатов, А.Д. Сахаров, Ю.Б. Харитон и др.

Широко известны работы Н.Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П.С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовалась на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель остойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и о глупости самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

.Классификация моделей

Единая классификация видов моделей затруднительна в силу многозначности понятия "модель" в науке и технике. Её можно проводить по различным основаниям: по характеру моделей (т. е. по средствам моделирования); по характеру моделируемых объектов; по сферам приложения моделей (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.) и его уровням ("глубине"), начиная, например, с выделения в физике моделей на микроуровне (моделирование на уровнях исследования, касающихся элементарных частиц, атомов, молекул). В связи с этим любая классификация методов моделирования обречена на неполноту, тем более, что терминология в этой области опирается не столько на "строгие" правила, сколько на языковые, научные и практические традиции, а ещё чаще определяется в рамках конкретного контекста и вне его никакого стандартного значения не имеет. Я постаралась представить наиболее полную классификацию моделей по их признакам с моей точки зрения.

Признаки классификаций моделей:

.По области использования;

.По фактору времени;

.По отрасли знаний;

.По форме представления.

Классификация моделей по области использования:

)Учебные модели - используются при обучении. Это могут быть наглядные пособия, различные тренажеры, обучающие программы.

)Опытные модели - это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик. Например, модель корабля исследуется в бассейне для изучения устойчивости судна при качке, модель автомобиля «продувается» в аэродинамической трубе с целью исследования обтекаемости кузова, модель сооружения используется для привязки здания к конкретной местности и т.д.

)Научно - технические модели - создаются для исследования процессов и явлений. К таким моделям можно отнести, например, прибор для получения грозового электрического разряда или стенд для проверки телевизоров.

)Игровые модели - это военные, экономические, спортивные, деловые игры. Эти модели как бы репетируют поведение объекта в различных ситуациях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. С помощью игровых моделей можно оказывать психологическую помощь больным, разрешать конфликтные ситуации.

)Имитационные модели - не только отражают реальность с той или иной степенью точности, а имитируют ее. Эксперименты с моделями проводят при разных исходных данных. По результатам исследования делаются выводы. Такой метод подбора правильного решения получил название метод проб и ошибок. Например, для выявления побочных действий лекарственных препаратов их испытывают в серии опытов над животными.

Классификация моделей по фактору времени:

)Статические - модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Например, обследование учащихся в стоматологической поликлинике дает состояние их зубов в данный момент времени: соотношение молочных и постоянных, наличие пломб, дефектов и т.п.

)Динамические - модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

При строительстве дома рассчитывают прочность его фундамента, стен, балок и устойчивость их к постоянной нагрузке. Это статическая модель здания. Но надо так же обеспечить противодействие ветрам, движению грунтовых вод, сейсмическим колебаниям и другим изменяющимся во времени факторам. Эти вопросы можно решить с помощью динамических моделей. Таким образом, один и тот же объект можно охарактеризовать и статической и динамической моделью.

Классификация моделей по отрасли знаний:

Это классификация по отрасли деятельности человека:

)Математические;

)Биологические;

)Химические;

)Социальные;

)Экономические;

)Исторические и т.д.

Классификация моделей по форме представления:

)Материальные - это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты.

)Абстрактные (нематериальные) - не имеют реального воплощения. Их основу составляет информация. Это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные, вербальные и информационные.

üМысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель способствует сознательной деятельности человека. Примером мысленной модели является модель поведения при переходе через дорогу. Человек анализирует ситуацию на дороге (какой сигнал подает светофор, как далеко находятся машины, с какой скоростью они движутся и т.п.) и вырабатывается модель поведения. Если ситуация смоделирована правильно, то переход будет безопасным, если нет, то может произойти дорожно-транспортное происшествие.

üВербальные (от лат. Verbalis - устный) - мысленные модели, выраженные в разговорной форме. Используется для передачи мыслей.

Чтобы информацию можно было использовать для обработки на компьютере, необходимо выразить ее при помощи системы знаков, т.е. формализовать. Правила формализации должны быть известны и понятны тому, кто будет создавать и использовать модель. Для этого используют более строгие модели - информационные.

üИнформационные модели - целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойства этого объекта.

Типы информационных моделей:

·Табличные - объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

·Иерархические - объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

·Сетевые - применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализации информационные модели бывают образно-знаковые и знаковые. Ярким примером образно-знаковой модели является географическая карта. Цвет и форма материков, океанов, гор, изображенных на карте, сразу подключает образное мышление. По цвету на карте сразу можно оценить рельеф. Например, с голубым цветом у человека ассоциируется вода, с зеленым цветущий луг, равнина. Карта изобилует условными обозначениями. Зная этот язык, человек может получить достоверную информацию об интересующем его объекте. Информационная модель в этом случае будет результатом осмысления сведений, полученных при помощи органов чувств и информации, закодированной в виде условных изображений.

То же можно сказать о живописи. Неискушенный зритель воспримет картину душой в виде образной модели. Но существуют художественные языки, соответствующие различным живописным жанрам и школам: сочетание цветов, характер мазка, способы передачи воздуха, объема и т. д. Человеку, знающему эти условности, легче разобраться в том, что имел в виду художник, особенно если произведение не относится к реализму. При этом общее восприятие картины (информационная модель) станет результатом осмысления информации как в образной, так и в знаковой формах.

Еще один пример такой модели - фотография. Фотоаппарат позволяет получить изображение оригинала. Обычно фотография дает нам довольно точное представление о внешнем облике человека. Существуют некоторые признаки (высота лба, посадка глаз, форма подбородка), по которым специалисты могут определить характер человека, его склонность к тем или иным поступкам. Этот специальный язык формируется из сведений, накопленных в области физиогномики и собственного опыта. Знающие врачи, взглянув на фото незнакомого человека, увидят признаки некоторых заболеваний. Задавшись разными целями, по одной и той же фотографии можно получить различные информационные модели. Они будут результатом обработки образной информации, полученной при разглядывании фотографии, и информации, сложившейся на основе знания специального профессионального языка.

По форме представления образно-знаковых моделей среди них можно выделить следующие группы:

Геометрические модели, отображающие внешний вид оригинала (рисунок, пиктограмма, чертеж, план, карта, объемное изображение);

Структурные модели, отражающие строение объектов и связи их параметров (таблица, граф, схема, диаграмма);

Словесные модели, зафиксированные (описанные) средствами естественного языка;

Знаковые модели можно разделить на следующие группы:

·Математические модели, представленные математическими формулами, отображающими связь различных параметров объекта, системы или процесса;

·Специальные модели, представленные на специальных языках (ноты, химические формулы и т. п.);

·Алгоритмические модели, представляющие процесс в виде программы, записанной на специальном языке.

.Процесс моделирования

Процесс моделирования включает три элемента: субъект (исследователь); объект исследования; модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение "модельных" экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является множество знаний о модели.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний об объекте. Этот процесс проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

.Моделирование как средство экспериментального исследования

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Прежде всего моделирование тесно связано с экспериментом. Выясним, в чем специфика модели в качестве средства экспериментального исследования в сравнении с другими экспериментальными средствами. Рассмотрение материальных моделей в качестве средств, орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Возникает вопрос о той специфике, которую вносит в эксперимент применение в нем модели.

Превращение эксперимента в одну из основных форм практики, происходившее параллельно с развитием науки, стало фактом с тех пор, как в производстве сделалось возможным широкое применение естествознания, что в свою очередь было результатом первой промышленной революции, открывшей эпоху машинного производства.

«Специфика эксперимента как формы практической деятельности в том, что эксперимент выражает активное отношение человека к действительности». В силу этого проводится четкое различие между экспериментом и научным познанием. Хотя всякий эксперимент включает и наблюдение как необходимую стадию исследования. Однако в эксперименте помимо наблюдения содержится и такой существенный признак как активное вмешательство в ход изучаемого процесса.

Под экспериментом понимается «вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект (процесс) посредством специальных инструментов и приборов».

Существует особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом.

В отличие от обычного эксперимента, где средства эксперимента, так или иначе, взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем. Про этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения и экспериментальным средством.

Для модельного эксперимента, по мнению ряда авторов, характерны следующие основные операции:

переход от натурального объекта к модели - построение модели (моделирование в собственном смысле слова).

переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных про исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, она может замещать и условия, в которых изучается некоторый объект обычного эксперимента. Обычный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования - выдвижение гипотезы, ее оценку и т.д., теоретические соображения, связанные с конструированием установки, а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение; в модельном эксперименте необходимо также обосновать отношение подобия между моделью и натуральным объектом и возможность экстраполировать на этот объект полученные данные.

В.А. Штофф в своей книге «Моделирование и философия» говорит о том, что теоретической основой модельного эксперимента, главным образом в области физического моделирования, является теория подобия. Она ограничивается установлением соответствий между качественно однородными явлениями, между системами, относящимися к одной и той же форме движения материи. Она дает правила моделирования для случаев, когда модель и натура обладают одинаковой (или почти одинаковой) физической природой.

Но в настоящее время практика моделирования вышла за пределы сравнительно ограниченного круга механических явлений и вообще, отношения системы в пределах одной формы движения материи. Возникающие математические модели, которые отличаются по своей физической природе от моделируемого объекта, позволили преодолеть ограниченные возможности физического моделирования. Про математическом моделировании основой соотношения модель - натура является такое обобщение теории подобия, которое учитывает качественную разнородность модели и объекта, принадлежность их разным формам движения материи. Такое обобщение принимает форму более абстрактной теории - изоморфизма систем.

Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднён, экономически невыгоден, либо вообще невозможен в силу тех или иных причин (моделирование уникальных (например, гидротехнических) сооружений, сложных промышленных комплексов, экономических систем, социальных явлений, процессов, происходящих в космосе, конфликтов и боевых действий и т.д.).

Исследование знаковых (в частности, математических) моделей также можно рассматривать как некоторые эксперименты («эксперименты на бумаге», умственные эксперименты). Это становится особенно очевидным в свете возможности их реализации средствами электронной вычислительной техники. Один из видов модельного эксперимента - модельно-кибернетический эксперимент, в ходе которого вместо «реального» экспериментального оперирования с изучаемым объектом находят программу его функционирования, которая и оказывается своеобразной моделью поведения объекта. Вводя этот алгоритм в ЭВМ, получают информацию о поведении оригинала в определенной среде, о его функциональных связях с меняющейся «средой обитания».

II. Практическая часть

1.Трехмерная графика

Теперь моя задача продемонстрировать процесс моделирования на конкретном примере. За основу возьмем программу для 3D-графики и анимации, использующуюся в учебном процессе средней школы: Gmax.

Очень многие эффекты в современных клипах и фильмах создаются с помощью компьютера. При этом широко используется трехмерная графика (3D, third dimension - третье измерение). С ее помощью на плоском экране имитируется движение объемных объектов в трехмерном мире.

Впервые компьютерные эффекты были широко использованы в фильме «Звездные войны» (режиссер Джордж Лукас, 1977 год). В современных фильмах нередко некоторые персонажи моделируются на компьютере, существует множество полнометражных фильмов, которые полностью созданы с помощью трехмерной графики и анимации, например, известная серия про Шрека.

Создание 3D-фильма включает несколько этапов, которые напоминают съемку обычного фильма:

)Моделирование - создание трехмерных объектов, персонажей;

)Текстурирование (раскраска) - наложение на модели рисунков (текстур), которые имитируют реальный материал (дерево, мрамор, металл);

)Освещение - установка и настройка источников света;

)Анимация - описание изменения объектов во времени (изменение положения, углов поворота, свойств);

)Съемка - выбор точки съемки сцены, установка камер, перемещение камер по сцене;

)Рендеринг (визуализация) - построение фотореалистичного изображения или анимации.

Однако за удовольствие нужно платить. Для работы с трехмерной графикой и анимацией нужен компьютер с мощным процессором, быстрой видеокартой и большим объемом оперативной и дисковой памяти. При этом для построения качественных изображений требуется огромное время (иногда несколько часов расчетов для одного кадра). Например, в программе 3ds Max предусмотрена возможность сетевого рендеринга, когда для расчета изображения используются несколько компьютеров, объединенных в сеть.

.Gmax - суть программы

Это программа для создания 3D-графики и анимации. Она представляет собой упрощенную версию всемирно-известной программы 3ds Max, которая считается стандартном «de facto» в мире профессионалов трехмерной графики. Однако 3ds Max - коммерческая программа, стоимость которой составляет более 150 000 рублей (версия 3ds Max 2008). В то же время Gmax - бесплатная программа, разработанная той же фирмой Autodesk (ранее она называлась Discreet) на основе версии 3D Studio 3.1.

По задумке фирмы Autodesk, основное назначение Gmax- разработка различных моделей для трехмерных игр (типа Quake, Flight Sim и др.) Однако ее можно с успехом применять для начального освоения 3D-графики. Тем более, что интерфейс и основные методы работы в Gmax точно такие же, как и у профессиональной программы 3ds Max.

Программа Gmax позволяет:

)Создавать трехмерные модели;

)Применять к моделям материалы;

)Настраивать освещение;

)Создавать анимацию с 3D-объектами.

При этом есть и недостатки:

)Поддерживаются далеко не все возможности 3ds Max, особенно современных версий;

)Отсутствует рендеринг (визуализация) - построение фотореалистичного изображения и анимации.

Файлы 3D-сцен, созданные в Gmax, имеют расширение *.gmax. Это особый формат, который не читают никакие другие программы. Однако можно установить дополнительные модули (экспортеры), которые позволяют записать сцены в других (более распространенных) форматах и таким образом передать модели в другую программу, например в 3ds Max.

.Краткий обзор интерфейса программы

Главное окно программы показано на рисунке:

Сверху расположены меню и кнопочная панель инструментов:

Для представления об объемной фигуре одного рисунка недостаточно, поэтому используются четыре окна проекций, занимающие основную часть окна: Top (вид сверху), Front (вид спереди), Left (вид слева) и Perspective (перспектива).

Перспективная проекция (в отличие от первых трех) учитывает перспективные искажения, то есть изображение объекта будет тем меньше, чем оно дальше от наблюдателя. Остальные проекции (не учитывающие искажения) называются ортографическими. Одно окно проекций - активное, оно выделяется дополнительной серой рамкой (на рисунке окно Top). Щелчком мыши можно сделать активным любое окно.

Кроме того, на сцену можно посмотреть справа (Right), снизу (Bottom) и сзади (Back). Для того, чтобы изменить вид в каком-то окне, надо щелкнуть правой кнопкой мыши на названии проекции и выбрать нужный вариант из подменю Views (виды). Справа от окон проекций расположена командная панель, с помощью которой создаются и редактируются элементы сцены. Под проекциями вы видите шкалу анимации (с числами на зеленоватом фоне)

.Управление видами

Существует два основных режима вывода - изображения:

)Smooth and Highlights (Сглаживание и подсветка) - вывод «раскрашенного» изображения объектов;

)Wireframe (Каркас) - вывод только контуров объектов и каркасной сетки.

По умолчанию в окне перспективной проекции (Perspective) объект раскрашен, а в других окнах проекций видны только каркасы. Так сделано для того, чтобы не тратить лишние ресурсы на прорисовку сложных сцен во всех окнах. Чтобы изменить режим, нужно щелкнуть правой кнопкой мыши на названии проекции (в левом верхнем углу соответствующего окна) и выбрать желаемый вариант в контекстном меню.

Для того, чтобы увеличить или уменьшить масштаб изображения, используют инструмент Zoom (Масштаб). Нужно включить инструмент, нажать левую кнопку мыши на поле и перетащить мышь при нажатой кнопке. Перетаскивая мышь к себе, мы отдаляем объект, и наоборот. Инструмент Zoom All (масштабировать все) действует точно также, но изменяет масштаб сразу во всех окнах проекций, а не только в активном окне.

Нажав клавиши Ctrl+R или щелкнув по кнопке Arc Rotate (вращение по дуге) на панели управления видами, можно «повернуть» проекцию, чтобы посмотреть на объект с другой стороны. Отметим еще раз, что при этом сам объект остается на месте, меняется только точка обзора.

Часто бывает полезно запомнить удачный вид в окне проекции Perspective, чтобы к нему можно было в любой момент вернуться. Для этого служат команды верхнего меню Views (Виды):

)Save Active Perspective View - сохранить активный вид в окне Perspective;

)Restore Active Perspective View - восстановить запомненный ранее вид в окне Perspective.

Эти команды можно применять и к другим видам (зависит от активного окна проекции), но к ним легче переходить с помощью «горячих» клавиш.

.Камера

Для съемки обычного фильма нужна видеокамера, а для того, чтобы построить фотореалистичное изображение в Gmax, тоже нужна камера - специальный объект, обозначающий точку и направление съемки. В нашу сцену уже была ранее добавлена камера, но сейчас она скрыта, поскольку отмечен флажок Cameras в свитке Hide by Category.

Для того, чтобы увидеть в активном окне проекции изображение с камеры, нужно нажать правую кнопку мыши на названии проекции и выбрать пункт Views-Camera01 из контекстного меню. Но самый быстрый способ - нажать на клавишу C (первую букву слова Camera). Чаще всего для просмотра изображения с камеры используют окно перспективной проекции.

.Моделирование простейшего объекта

Я смоделирую самый простой предмет нашего обихода - стул со спинкой. После того как я запустила программу, перехожу в верхнее меню и выбираю "Create> Box" или в правой панели выбираю вкладку "Create", затем активирую кнопку "Geometry", а в группе "Object Type", нажимаю на кнопку "Box".

После активации "Box", в правой панели появится группа "Keyboard Entry", открываю её и указываю параметры как на изображении:

моделирование трехмерная графика gmax

После того как я указала параметры, нажимаю кнопку "Create". После того как создана "одна нога", необходимо создать ещё три, но не нужно по новой выполнять все предыдущие действия, так как одна ножка есть, надо просто её "клонировать". И так, для начала выходим из режима создания "Box", для этого выбираю инструмент "Select and Move", он находится на верхней панели инструментов:

Теперь, выделяю модель, и в окне "Top", зажав клавишу "Shift" перетаскиваю модель вправо за красную стрелку, отпускаю и в появившемся окне, в группе "Object" указываю "Copyꞌꞌ:

Теперь таким же методом, только выделив два объекта, копирую их перетащив в окне "Top" объекты вниз за зелёную стрелку. После копирования, должно получится примерно так:

В предыдущих этапах я рассмотрела лишь создание 3D примитивов, теперь приступаю к моделированию. Так как я создаю стул со спинкой, то спинку можно как и в реальности, делать от задних ножек стула. И так, выделяю одну из дальних ножек, то есть верхнюю ножку в окне "Top", затем, ПКМ кликаю по ней и в появившемся контекстном меню выбираю "Convert To> Convert to Editable Poly":

После этого, в правой панели, нахожу группу "Edit Geometry" и нажимаю кнопку "Attach", затем навожу курсор на вторую верхнюю ножку в окне "Top" и нажимаю ЛКМ, таким же образом, "присоединяю" оставшиеся ножки. Теперь отключаю режим "присоединения", нажав повторно на кнопку "Attach". Так я присоединила к объекту "Box1", объекты ꞌꞌBox2", "Box3", "Box4", тем самым объединив их.

Навожу курсор в окно "Perspective", нажимаю клавишу "F4" для того чтобы было видно края объекта, затем навожу курсор на верхний полигон любой ножки и нажимаю ЛКМ один раз, как Вы уже заметили, края в верхней части, стали красными, это говорит о том что я выделила полигон. Теперь с зажатой кнопкой "Ctrl" выделяю оставшиеся верхние полигоны на других ножках:

После того как все верхние полигоны выделены, в правой панели, активирую режим "Extrude", а в появившемся чуть ниже поле "Extrusion", ввожу число 10 и нажимаю клавишу "Enter":

Я только что применила "выдавливание", тем самым увеличив количество полигонов и высоту нашего объекта, теперь необходимо продолжить "выдавливание", но только двух дальних ножек. Теперь я перехожу в окно "Top" и с зажатой клавишей "Alt" убираю выделение нижних полигонов, затем перехожу в правую панель и в поле "Extrusion" ввожу число 40, вот что должно получится:

Для чего я столько раз "выдавливала"? Всё очень просто, если вы видели стулья, то у них есть элементы для придания жёсткости, а именно каркас. То же самое со спинкой, зачем я сделала выдавливания дважды на спинке? Чтоб было проще делать спинку. Хотя об этом чуть позже. Теперь нам необходимо сделать следующее, выделяя внутренние полигоны:

Выдавливать их, пока они не достигнут противоположных им полигонов, для этого, включаю режим "Extrude" и с правой стороны от поля "Exstrusion" зажав ЛКМ, перемещаю мышь вверх или вниз, пока не добиваюсь нужного результата:

Теперь, добиваюсь этого результата:

Ну что же, стул почти готов, но чего не хватает? Не хватает сиденья. Ну что же, вернёмся к началу, но теперь я буду действовать по другому. Перехожу в режим создания "Box", выбрав "Create> Box" и наведя курсор в окно "Top", зажав ЛКМ, создаю квадрат по размеру, чуть больше нашего каркаса:

Затем отпускаю ЛКМ и смотрю на правую панель: перемещая мышь вверх или вниз, меняется значение в поле "Height". Стараюсь, чтобы число в этом поле было примерно равно 4-ём. Итак, объект создан, но надо подправить высоту, теперь я могу вручную задать значение равное 4. Следом мне необходимо поднять сиденье и поставить его на законное место. Использую для этого инструмент "Select and Move" и пользуюсь окнами "Top" и "Front", в итоге вот что получается:

Теперь осталось самое простое... Мне необходимо как-то изменить симметричность спинки, ведь в реальности спинки никогда не стоят в положении 90 градусов. Итак, выделяю каркас со спинкой и в правой панели, в группе "Selection", выбираю инструмент "Vertex":

Перехожу в окно "Left", выделяю все "точки" в верхней части спинки и перетаскиваю их немного левее за красную стрелку:

Теперь делаю немного наклонённой верхнюю часть спинки, выбираю в верхней панели инструмент "Select and Rotate" и в окне "Left", наведя курсор в центр и зажав ЛКМ, перемещаю мышь немного вниз, тем самым провернув "точки" против часовой стрелки:

Вот что, в итоге, получилось:

В практической части показаны и указаны только самые основные опции и примеры использования программного продукта Gmax. Для более углубленного изучения обратитесь к списку используемых источников в конце работы.

Заключение

Моделирование глубоко проникает в теоретическое мышление. Более того, развитие любой науки в целом можно трактовать - в весьма общем, но вполне разумном смысле, - как «теоретическое моделирование». Важная познавательная функция моделирования состоит в том, чтобы служить импульсом, источником новых теорий. Нередко бывает так, что теория первоначально возникает в виде модели, дающей приближённое, упрощённое объяснение явления, и выступает как первичная рабочая гипотеза, которая может перерасти в «пред теорию» - предшественницу развитой теории. При этом в процессе моделирования возникают новые идеи и формы эксперимента, происходит открытие ранее неизвестных фактов. Такое «переплетение» теоретического и экспериментального моделирования особенно характерно для развития физических теорий.

Моделирование - не только одно из средств отображения явлений и процессов реального мира, но и - несмотря на описанную выше его относительность - объективный практический критерий проверки истинности наших знаний, осуществляемой непосредственно или с помощью установления их отношения с другой теорией, выступающей в качестве модели, адекватность которой считается практически обоснованной. Применяясь в органическом единстве с другими методами познания, моделирование выступает как процесс углубления познания, его движения от относительно бедных информацией моделей к моделям более содержательным, полнее раскрывающим сущность исследуемых явлений действительности.

Список используемых источников

.Клейтон Е. Gmax настольная книга. - Издательский дом Кудиц - Образ, 2004.

.Ляпунов А.А. Проблемы теоретической и прикладной кибернетики. М.: «Наука», 1980, с. 297-307.

.Ляпунов А.А. Статья: «О роли математики в современной человеческой культуре», 1968 г.

.Моисеев Н.Н. Человек и биосфера: Опыт систем, анализа и эксперименты с моделями - М.: Наука, 1985. - 271 с.

.Оксфордский толковый словарь английского языка. Oxford University Press, 2008 г.

.Поляков К. Преподавание, наука и жизнь. #"justify">.Рыжиков Ю.И. Имитационное моделирование: Теория и технологии. Альтекс, 2004.

.Свободная энциклопедия ВикипедиЯ. #"justify">.Советский энциклопедический словарь. Советская энциклопедия, 1983 г.

.Штофф В.А. Моделирование и философия. М.: Наука, 1966 г.

ФГОУ ВПО «Вологодская государственная молочнохозяйственная

академия имени Н.В. Верещагина»

Кафедра философии


«Модель и метод моделирования в научном исследовании»


Вологда - Молочное 2011 г


Введение

1.Понятие модель

2.Классификация моделей и виды моделирования

.Цели моделирования

.Основные функции моделирования

4.1Моделирование как средство экспериментального исследования

4.2Моделирование и проблема истины

5.Место моделей в структуре эксперимента, модельный эксперимент

Заключение

Список использованных источников


Введение


С процессом моделирования и различными моделями человек начинает сталкиваться с самого раннего детства. Так, еще не научившись уверенно ходить, малыш начинает играть с кубиками, сооружая из них различные конструкции (точнее, модели). Его окружают разнообразные игрушки, при этом большинство из них в большей или меньшей степени воспроизводят (моделируют) отдельные свойства и форму реально существующих предметов и объектов. В этом смысле такие игрушки также можно рассматривать в качестве моделей соответствующих объектов.

В школе практически все обучение построено на использовании моделей в той или иной форме. Действительно, для знакомства с основными конструкциями и правилами родного языка используются различные структурные схемы и таблицы, которые можно считать моделями, отражающими свойства языка. Процесс написания сочинения следует рассматривать как моделирование некоторого события или явления средствами родного языка. На уроках биологии, физики, химии и анатомии к плакатам и схемам (т.е. моделям) добавляются макеты (тоже модели) изучаемых реальных объектов. На уроках рисования или черчения на листе бумаги либо ватмана создаются модели различных объектов, выраженные изобразительным языком либо более формализованным языком чертежа.

Даже такую трудно формализуемую область знания, как история, также можно считать непрерывной эволюционирующей совокупностью моделей прошлого какого-либо народа, государства и т.д. Устанавливая закономерности в наступлении разных исторических событий (революций, войн, ускорений либо застоев исторического развития), можно не только выяснить причины, приведшие к данным событиям, но и прогнозировать и даже управлять их появлением и развитием в будущем.

Так, моделями можно считать картину, написанную художником, художественное произведение и скульптуру. Даже жизненный опыт человека, его представления о мире является примером модели. Причем поведение человека определяется моделью сформировавшейся в его сознании. Психолог или учитель, изменяя параметры такой внутренней модели, способен в отдельных случаях существенно влиять на поведение человека.

Без преувеличения можно утверждать, что в своей осознанной жизни человек имеет дело исключительно с моделями тех или иных реальных объектов, процессов, явлений. При этом один и тот же объект воспринимается различными людьми по-разному, иногда с точностью до наоборот. Это восприятие, мысленный образ объекта также является разновидностью модели последнего (так называемой когнитивной моделью) и существенным образом зависит от множества факторов: качества и объема знаний, особенностей мышления, эмоционального состояния конкретного человека "здесь и сейчас" и от множества других, зачастую не доступных рациональному осознанию. Особенно велика роль моделей и моделирования в современной науке и технике.

Можно ли обойтись в технике без применения тех или иных видов моделей? Очевидный ответ - нет! Безусловно, что новый самолет можно построить "из головы" (без предварительных расчетов, чертежей, экспериментальных образцов, т.е. используя только единственную идеальную модель, существующую в мыслях конструктора), но едва ли это будет достаточно эффективная и надежная конструкция. Единственное ее достоинство - уникальность. Ведь даже автор не сможет повторно изготовить точно такой же самолет, так как в процессе изготовления первого экземпляра будет получен некоторый опыт, который обязательно изменит идеальную модель в голове самого конструктора.

Чем более сложным и надежным должно быть техническое изделие, тем большее число видов моделей потребуется на этапе его проектирования.

Как правило, сложные изделия создаются целыми коллективами разработчиков. Вся совокупность применяемых ими разнообразных моделей позволяет сформировать общую для всего коллектива идеальную модель разрабатываемого изделия. Реальное техническое изделие можно рассматривать как материальную модель (аналог) созданной авторами идеальной модели.

Повышенный интерес философии и методологии познания к теме моделирования вызван тем значением, которое метод моделирования получил в современной науке, и в особенности в таких ее разделах, как физика, химия, биология, кибернетика, не говоря уже о многих технических науках.

Однако моделирование как специфическое средство и форма научного познания не является изобретением 19 или 20 века. Достаточно указать на представления Демокрита и Эпикура об атомах, их форме и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных вещей (и вызываемых ими ощущений) с помощью представления о круглых и гладких или крючковатых частицах, «сцепленных между собой наподобие веток оплетенных» (Лукреций), вспомнить, что знаменитая антитеза геоцентрического и гелиоцентрического мировоззрений опиралась на две принципиально различные модели Вселенной, описанные в «Альмагесте» Птолемея и сочинении Н. Коперника «Об обращениях небесных сфер», чтобы обнаружить весьма старинное происхождение этого метода. Если проследить внимательнейшим образом историческое развитие научных идей и методов, нетрудно заметить, что модели никогда не исчезали из арсенала науки.


1. Понятие модель


Слово "модель" произошло от латинского слова "modelium", означает: мера, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или вещи, сходной в каком-то отношении с другой вещью". По мнению многих авторов , модель использовалась первоначально как изоморфная теория (две теории называются изоморфными, если они обладают структурным подобием по отношению друг к другу).

С другой стороны, в таких науках о природе, как астрономия, механика, физика термин "модель" стал применяться для обозначения того, что она описывает. В.А. Штофф отмечает, что "здесь со словом "модель" связаны два близких, но несколько различных понятия". Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Таковы, в частности представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться. В более узком смысле термин "модель" применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических ("планетарная модель атома" - строение атома изображалось как строение солнечной системы). Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.

Во многих дискуссиях, посвященных гносеологической роли и методологическому значению моделирования, этот термин употреблялся как синоним познания, теории, гипотезы и т.п. Например, часто модель употребляется как синоним теории в случае, когда теория еще недостаточно разработана, в ней мало дедуктивных шагов, много неясностей. Иногда этот термин употребляют в качестве синонима любой количественной теории, математического описания. Несостоятельность такого употребления с гносеологической точки зрения, по мнению В.А. IIIтоффа, в том, "что такое словоупотребление не вызывает никаких новых гносеологических проблем, которые были бы специфичны для моделей". Существенным признаком, отличающим модель от теории (по словам И.Т. Фролова) является не уровень упрощения, не степень абстракции, и следовательно, не количество этих достигнутых абстракций и отвлечений, а способ выражения этих абстракций, упрощений и отвлечении, характерный для модели.

В философской литературе, посвященной вопросам моделирования, предлагаются различные определения модели. Определение И.Т. Фpолова: «Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы". Здесь в основе мысль, что модель - средство познания, главный ее признак - отображение. На наш взгляд, наиболее полное определение понятия "модель» дает В.А. IIIтофф в своей книге "Моделирование и философия": "Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте".

При дальнейшем рассмотрении моделей и процесса моделирования будем исходить из того, что общим свойством всех моделей является их способность отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.


2. Классификация моделей и виды моделирования


В литературе, посвященной философским аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Например, в (2 с23) называются такие признаки, как:

Способ построения (форма модели);

Качественная специфика (содержание модели).

По способу построения модели бывают материальные и идеальные. Остановимся на группе материальных моделей. Несмотря на то, что эти модели созданы человеком, но они существуют объективно. Их назначение специфическое - отразить пространственные свойства, динамику изучаемых процессов, зависимости и связи. Материальные модели соединены с объектами отношением аналогии.

Материальные модели неразрывно связаны с воображаемыми (даже, прежде, чем что-либо построить - сначала теоретическое представление, обоснование). Эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение. По форме они могут быть:

Образные, построенные из чувственно наглядных элементов;

Знаковые, в этих моделях элементы отношения и свойства моделируемых явлений выражены при помощи определенных знаков;

Смешанные, сочетающие свойства и образных, и знаковых моделей.

Достоинства данной классификации в том, что она дает хорошую основу для анализа двух основных функций модели:

Практической (в качестве средства научного эксперимента)

Теоретической (в качестве специфического образа действительности, в котором содержатся элементы логического и чувственного, абстрактного и конкретного, общего и единичного).

Другая классификация есть у Б.А. Глинского в его книге "Моделирование как метод научного исследования", где наряду с обычным делением моделей по способу их реализации, они делятся и по характеру воспроизведения сторон оригинала:

Субстанциональные

Структурные

Функциональные

Смешанные

В зависимости от способа мышления исследователя модели, его взгляда на мир, используемой алгебры, модели могут принимать различную форму. Использование различных математических аппаратов впоследствии приводит к различным возможностям в решении задач.

Модели могут быть:

Феноменологические и абстрактные;

Активные и пассивные;

Статические и динамические;

Дискретные и непрерывные;

Детерминированные и стохастические;

Функциональные и объектные.

Феноменологические модели сильно привязаны к конкретному явлению. Изменение ситуации часто приводит к тому, что моделью воспользоваться в новых условиях достаточно сложно. Это происходит оттого, что при составлении модели её не удалось построить с точки зрения подобия внутреннему строению моделируемой системы. Феноменологическая модель передаёт внешнее подобие.

Абстрактная модель воспроизводит систему с точки зрения её внутреннего устройства, копирует её более точно. У неё больше возможностей, шире класс решаемых задач.

Активные модели взаимодействуют с пользователем; могут не только, как пассивные, выдавать ответы на вопросы пользователя, когда тот об этом попросит, но и сами активируют диалог, меняют его линию, имеют собственные цели. Все это происходит за счёт того, что активные модели могут самоизменяться.

Статические модели описывают явления без развития. Динамические модели прослеживают поведение систем, поэтому используют в своей записи, например, дифференциальные уравнения, производные от времени.

Дискретные и непрерывные модели. Дискретные модели изменяют состояние переменных скачком, потому что не имеют детального описания связи причин и следствий, часть процесса скрыта от исследователя.

Непрерывные модели более точны, содержат в себе информацию о деталях перехода.

Детерминированные и стохастические модели. Если следствие точно определено причиной, то модель представляет процесс детерминировано. Если из-за неизученности деталей не удаётся описать точно связь причин и следствий, а возможно только описание в целом, статистически (что часто и бывает для сложных систем), то модель строится с использованием понятия вероятности.

Распределённые, структурные, сосредоточенные модели. Если параметр, описывающий свойство объекта, в любых его точках имеет одинаковое значение (хотя может меняться во времени!), то это система с сосредоточенными параметрами. Если параметр принимает разные значения в разных точках объекта, то говорят, что он распределён, а модель, описывающая объект, ?распределённая. Иногда модель копирует структуру объекта, но параметры объекта сосредоточенны, тогда модель?структурная.

Функциональные и объектные модели. Если описание идёт с точки зрения поведения, то модель построена по функциональному признаку. Если описание каждого объекта отделено от описания другого объекта, если описываются свойства объекта, из которых вытекает его поведение, то модель является объектно-ориентированной.

Каждый подход имеет свои достоинства и недостатки. Разные математические аппараты имеют разные возможности (мощность) для решения задач, разные потребности в вычислительных ресурсах. Один и тот же объект может быть описан различными способами. Инженер должен грамотно применять то или иное представление, исходя из текущих условий и стоящей перед ним проблемы.

Приведённая выше классификация является идеальной. Модели сложных систем обычно имеют комплексный вид, используют в своём составе сразу несколько представлений. Если удаётся свести модель к одному типу, для которого уже сформулирована алгебра, то исследование модели, решение задач на ней существенно упрощается, становится типовым. Для этого модель должна быть различными способами (упрощением, переобозначением и другими) приведена к каноническому виду, то есть к виду, для которого уже сформулирована алгебра, её методы. В зависимости от используемого типа модели (алгебраические, дифференциальные, графы и т.д.) на разных этапах её исследования используются различные математические аппараты.

Теперь перейдем к рассмотрению вопросов, связанных непосредственно с самим моделированием. "Моделирование? метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов? физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т.п." (8 с421). Моделирование может быть:

Предметное (исследование основных геометрических, динамических, функциональных характеристик объекта на модели);

Физическое (воспроизведение физических процессов);

Предметно - математическое (исследование физического процесса путем опытного изучения каких-либо явлений иной физической природы, но описываемых теми же математическими соотношениями, что и моделируемый процесс);

Знаковое (расчетное моделирование, абстрактно - математическое).


3. Цели моделирования


Хорошо построенная модель, как правило, доступнее, информативнее и удобнее для исследователя, нежели реальный объект. Рассмотрим основные цели, преследуемые при моделировании в научной сфере. Самым важным и наиболее распространенным предназначением моделей является их применение при изучении прогнозировании поведения сложных процессов и явлений. Следует учитывать, что некоторые объекты и явления вообще не могут быть изучены непосредственным образом. Недопустимы, например, широко - масштабные натурные эксперименты с экономикой страны или со здоровьем ее населения (хотя и те, и другие с определенной периодичностью ставятся и реализуются). Принципиально неосуществимы эксперименты с прошлым какого?либо государства или народа (История не терпит сослагательного наклонения). Невозможно (по крайней мере, в настоящее время) провести эксперимент по прямому исследованию структуры звезд. Многие эксперименты неосуществимы в силу своей дороговизны или рискованности для человека или среды его обитания. Как правило, в настоящее время все сторонние предварительные исследования различных моделей явления предшествуют проведению любых сложных экспериментов. Более того, эксперименты на моделях с применением компьютера позволяют разработать план натурных экспериментов, выяснить требуемые характеристики измерительной аппаратуры, наметить срок и проведения наблюдений, а также оценить стоимость такого эксперимента. Другое, не менее важное, предназначение моделей состоит в том, что с их помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта, поскольку сама модель отражает лишь некоторые основные характеристики исходного объекта, учет которых необходим при исследовании того или иного процесса или явления. Например, исследуя движение массивного тела в атмосфере вблизи поверхности Земли, на основании известных экспериментальных данных и предварительного физического анализа можно выяснить, что ускорение существенно зависит от массы и геометрической формы этого тела (в частности, от величины поперечного к направлению движения сечения объекта), в определенной степени от шероховатости поверхности, но не зависит от цвета поверхности. При рассмотрении движения того же тела верхних слоях атмосферы, где сопротивлением воздуха можно пренебречь, несущественным и становятся и форма, и шероховатость поверхности.

Конечно, модель любого реального процесса или явления "беднее" его самого как объективно существующего (процесса, явления). В то же время хорошая модель "богаче" того, что понимается под реальностью, поскольку в сложных системах понять всю совокупность связей "разом" человек (или группа людей), как правило, не в состоянии. Модель же позволяет "играть" с ней: включать или отключать те или иные связи, менять их для того, чтобы понять важность для поведения системы в целом.

Модель позволяет научиться правильно управлять объектом путем апробирования различных вариантов управления. Использовать для этого реальный объект часто бывает рискованно или просто невозможно. Например, получить первые навыки в управлении современным самолетом безопаснее, быстрее и дешевле на тренажере (т.е. модели), чем подвергать себя и дорогую машину риску.

Если свойства объекта с течением времени меняются, то особое значение приобретает задача прогнозирования состояний такого объекта под действием различных факторов. Например, при проектировании и эксплуатации любого сложного технического устройства желательно уметь прогнозировать изменение надежности функционирования как отдельных подсистем, так и всего устройства в целом.

Итак, модель нужна для того, чтобы:

) понять, как устроен конкретный объект: какова его структура, внутренние связи, основные свойства, законы развития, саморазвития и взаимодействия с окружающей средой;

) научиться управлять объектом или процессом, определять наилучшие способы управления при заданных целях и критериях;

3) прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект.

моделирование наука эксперимент

4. Основные функции моделирования


1 Моделирование как средство экспериментального исследования


Рассмотрение материальных моделей в качестве орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Превращение эксперимента в одну из основных форм практики, происходившее параллельно с развитием науки, стало фактом с тех пор, как в производстве сделалось возможным широкое применение естествознания, что в свою очередь было результатом первой промышленной революции, открывшей эпоху машинного производства. Специфика эксперимента как формы практической деятельности в том, что эксперимент выражает активное отношение человека к действительности. В силу этого, в марксистской гносеологии проводится четкое различие между экспериментом и научным познанием. Хотя всякий эксперимент включает и наблюдение как необходимую стадию исследования. Однако в эксперименте помимо наблюдения содержится и такой существенный для революционной практики признак как активное вмешательство в ход изучаемого процесса. "Под экспериментом понимается вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект (процесс) посредством специальных инструментов и приборов." .

Существует особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом. В отличие от обычного эксперимента, где средства эксперимента так или иначе взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем. При этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения и экспериментальным средством. Для модельного эксперимента, по мнению ряда авторов , характерны следующие основные операции:

Переход от натурального объекта к модели - построение модели (моделирование в собственном смысле слова);

Экспериментальное исследование модели;

Переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, она может замещать и условия, в которых изучается некоторый объект обычного эксперимента. Обычный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования - выдвижение гипотезы, ее оценку и т.д., а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение. В модельном эксперименте необходимо также обосновать отношение подобия между моделью и натуральным объектом и возможность экстраполировать на этот объект полученные данные. В.А. IIIтофф в своей книге "Моделирование и философия" говорит о том, что теоретической основой модельного эксперимента, главным образом в области физического моделирования, является теория подобия. Она дает правила моделирования для случаев, когда модель и натура обладают одинаковой (или почти одинаковой) физической природой (2 с31). Но в настоящее время практика моделирования вышла за пределы сравнительно ограниченного круга механических явлений. Возникающие математические модели, которые отличаются по своей физической природе от моделируемого объекта, позволили преодолеть ограниченные возможности физического моделирования. При математическом моделировании основой соотношения модель - натура является такое обобщение теории подобия, которое учитывает качественную разнородность модели и объекта, принадлежность их разным формам движения материи. Такое обобщение принимает форму более абстрактной теории изоморфизма систем.


4.2 Моделирование и проблема истины


Интересен вопрос о том, какую роль играет само моделирование, в процессе доказательства истинности и поисков истинного знания. Что же следует понимать под истинностью модели? Если истинность вообще - "соотношение наших знаний объективной действительности"(2 с178), то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными. Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров. Так планетарная модель атома Резерфорда оказалась истинной в рамках исследования электронной структуры атома, а модель Дж. Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, неложны, просто существуют. В модели реализованы двоякого рода знания:

Знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта;

Теоретические знания, посредством которых модель была построена.

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета. Таким образом, можно говорить о том, истинность присуща материальным моделям:

В силу связи их с определенными знаниями;

В силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления;

в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

"И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения"(2 с180).

Модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели. Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории.


5. Место моделей в структуре эксперимента, модельный эксперимент


Может показаться, что всякий корректно поставленный эксперимент предполагает использование действующей модели. В самом деле, поскольку в экспериментальной установке исследуется явление в «чистом» виде и полученные результаты характеризуют не только данное единичное явление в единичном опыте, но и другие явления этого класса, на которые переносятся каким-то способом результаты опыта, постольку данное явление можно считать в известном смысле моделью других явлений этого же класса. Однако это не так, ибо отношение между явлениями, которое изучается в данном единичном эксперименте, и другими явлениями этой же области есть отношение тождества, а не аналогии, между тем как именно последняя существенна для модельного отношения. Поэтому следует выделить особую! форму эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма эксперимента называется модельным экспериментом или моделированием.

Существенным отличием модельного эксперимента от обычного является его своеобразная структура. В то время как в обычном эксперименте средства экспериментального исследования так или иначе непосредственно взаимодействуют с объектом исследования, в модельном эксперименте такого взаимодействия нет, поскольку здесь экспериментируют не с самим объектом, а с его заместителем. При этом примечательно, что объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. «Моделирование, - пишет академик Л. И. Седов, - это есть замена изучения интересующего нас явления в натуре изучением аналогичного явления на модели меньшего или большего масштаба, обычно в специальных лабораторных условиях. Основной смысл моделирования заключается в том, чтобы по результатам опытов с моделями можно было дать необходимые ответы о характере эффектов и о различных величинах, связанных с явлением в натурных условиях».

Рассмотрим в этой связи более подробно структуру модельного эксперимента на конкретном примере. Возьмем для этого модель движения газов в паровом котле. Такая модель строится и изучается следующим образом. Из промышленных испытаний котла-объекта получают некоторые данные и параметры, представленные в виде характеристических величин. При помощи соответствующих теоретических средств (логические правила, математические средства, правила и критерии теории подобия) производится расчет модели, который позволяет решить вопрос об оптимальных условиях ее конструкции (размеры, физическая природа моделирующих элементов, выбор материалов, способы и цели ее последующего исследования). Таким образом, первый этап - это теоретический расчет модели теоретические соображения о задачах, целях и способах последующего экспериментирования с нею. Следующим шагом является создание самой модели. Далее производятся наблюдения, измерения необходимых параметров, изменение и варьирование условий, повторение условий работы самой модели и т. п.

Например, изучение модели движения газов в котле состоит в следующем. Не ограничиваясь простым наблюдением, которого явно недостаточно, производят фотографирование, пользуясь специальным освещением, создают штриховые рисунки, которые, хотя носят отпечаток субъективности, все же отличаются большой простотой и наглядностью. Для улучшения условий наблюдения за движением жидкости по трубкам пользуются различными способами ее подкрашивания. Затем производятся измерения давления или скорости движения воды или газов, расхода жидкости, температуры, количества тепла и т. п.

Таким образом, на новом этапе эксперимента, когда модель построена, субъективная деятельность экспериментатора продолжается, но к ней присоединяются новые моменты, относящиеся к объективной стороне эксперимента, - сама модель (т. е. некоторая экспериментальная установка) и технические средства (лампы, экраны, фотоаппараты, химические вещества, термометры, калориметры и другие измерительные приборы), при помощи которых осуществляются наблюдения и измерения. Все эти средства, которыми пользуются при изучении модели, представляют собой материальные средства, характеризующие объективную сторону всякого эксперимента. Но здесь, помимо них, к объективной стороне относится сама модель, в нашем случае - модель парового котла.

Законно поставить вопрос: каково же место модели в эксперименте? Ясно, что она представляет собой часть гносеологического объекта, как и средства экспериментального исследования, но входит ли она целиком в состав последних или же является чем-то отличным от них?

С одной стороны, очевидно, что модель построена не как самоцель, а как средство изучения какого-то другого объекта, который она замещает, с которым она находится в определенных отношениях сходства или соответствия. Исследователя интересуют свойства модели не сами по себе, а лишь постольку, поскольку их изучение позволяет судить о свойствах другого предмета, получать о нем некоторую информацию. Этот предмет и выступает как подлинный объект изучения, а по отношению к нему модель является лишь средством экспериментального исследования. С другой стороны, в данном эксперименте модель является предметом изучения. Изучается режим ее работы в определенных условиях, над ней ведутся не только визуальные наблюдения, но и измеряются ее параметры при помощи специальных приборов. Она подвергается определенным причинным воздействиям, и экспериментатор регистрирует реакцию данной системы на эти планомерные воздействия и т. п. Словом, в данном эксперименте изучается модель как некий объект исследования, и в этом отношении она является объектом изучения.

Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения (поскольку замещает другой, подлинный объект), и экспериментальным средством (поскольку является средством познания этого объекта).

Вследствие двоякой роли модели структура эксперимента; существенно изменяется, усложняется. Если в обычном, или натурном, эксперименте объект исследования и прибор находились в непосредственном взаимодействии, так как экспериментатор с помощью прибора воздействовал прямо на изучаемый объект, то в модельном эксперименте внимание экспериментатора сосредоточено на исследовании модели, которая теперь подвергается всевозможным воздействиям и исследуется с помощью приборов. Подлинный же объект изучения непосредственно в самом эксперименте не участвует.

Для модельного эксперимента характерны следующие основные операции: 1) переход от натурного объекта к модели - построение модели (моделирование в собственном смысле слова); 2) экспериментальное исследование модели; 3) переход от модели к натурному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, она может также замещать и условия, в которых изучается некоторый объект обычного эксперимента.

Ввиду того, что в модельном эксперименте исследуется не сам объект изучения, а его заместитель, естественно возникает вопрос, на каком основании и в каких границах можно переносить данные, полученные на модели, на моделируемый объект. Этот вопрос решается в зависимости от особенностей различных групп материальных моделей.

Независимо от окончательного вывода о познавательных возможностях модельных экспериментов следует сразу же обратить внимание на то, что в структуре этих экспериментов значительно усилена роль теории как необходимого звена, связывающего постановку опыта и его результаты с объектом исследования. Если обычный эксперимент предполагает наличие теоретического момента в начальной стадии опыта - возникновение проблемы, выдвижение и оценка гипотезы, выведение следствий, теоретические соображения, связанные с конструкцией экспериментальной установки, а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение, то в модельном эксперименте, кроме того, необходимо теоретически обосновать отношение между моделью и натурным объектом. Без этого обоснования модельный эксперимент теряет свое специфическое познавательное значение, ибо он перестает быть источником информации о действительном, или натурном, объекте. Таким образом, в модельном эксперименте теоретическая сторона представлена значительно сильнее, чем в обычном, он еще в большей степени является соединением теории и практики.

Хотя модельный эксперимент расширяет возможности экспериментального исследования ряда объектов, в отмеченном только что обстоятельстве нельзя не заметить некоторой слабости этого метода по сравнению с обычным экспериментом. Включение теории (сознательной деятельности субъекта) в качестве звена, связывающего модель и объект, может стать источником ошибок, что снижает доказательную силу модельного эксперимента. Однако неограниченные возможности практического исследования свойств, поведения, закономерностей объектов, недоступных по каким-либо причинам для обычного непосредственного экспериментирования, возможности открытия новых способов расширения сферы человеческого познания путем применения модельного эксперимента свидетельствуют о его преимуществах по сравнению с прямым экспериментом.

Поскольку в модельном эксперименте непосредственному исследованию подвергается модель, а результаты исследования переносятся на моделируемый объект, то теоретическое обоснование права на этот перенос является обязательным условием и составной частью такого эксперимента. Поэтому характеристика теоретических средств, при помощи которых обеспечивается перенос результатов исследования модели на «действительный» объект изучения, является необходимой составной частью описания сущности всякого модельного эксперимента.


Заключение


В связи с вышесказанным представляется целесообразным сделать вывод о том, что метод моделирования является одним из наиболее приемлемых адекватных, объективных и надежных методов научных исследований, позволяющих максимально объективно и всесторонне анализировать многие явления или процессы в большинстве наук при минимальных потерях и риске.

В данном реферате проведен анализ современных взглядов на концепцию моделирования, как с практической, так и с методологической точки зрения. Сделана попытка понять теоретические и философские аспекты измерения, как познавательного процесса.

В моем понимании, основная задача данной работы осмыслить ту роль, которую играли и играет моделирование в становлении науки и техники в историческом аспекте, выявить философскую основу моделирования.

Все вышесказанное необходимо для адекватного и плодотворного использования моделей и моделирования в процессе проведения экспериментальных работ и их математической обработки при исследовании процессов, рассматриваемых в моем научном исследовании.


Литература


1. pmtf.msiu.ru <#"justify">2. Штофф В.А. Моделирование и философия. М.: «Наука», 1966.

Веденов А.А. Моделирование элементов мышления. М.: «Наука», 1988.

Кочергин А.Н. Моделирование мышления. М.: «Наука», 1969.

Фролов И.Т. Гносеологические проблемы моделирования. М.: «Наука», 1961.

Батороев К.Б. Кибернетика и метод аналогий. М.: «Высшая школа», 1974.

Бир С. Кибернетика и управление производством. М.: «Наука», 1965.

Эксперимент. Модель. Теория. М. - Берлин: «Наука», 1982.

9. Мухин О.И. Электронный ресурс.

Седов Л.И. Методы подобия и размерности в механике. М.: «ГИТТЛ», 1957.

Штофф. В.А. Моделирование и философия. М.-Л., «Наука», 1965.

Штофф В.А. Введение в методологию научного познания. Изд. Ленинградского ун-та, 1972.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.