Определение расстояний на местности различными способами. Электромагнитный и лазерный дальномеры

Глазомерно расстояние определяют путем сравнения с известным на местности отрезком. На точность глазомерного определения расстояния оказывают влияние освещенность, размеры объекта, его контраст с окружающим фоном, прозрачность атмосферы и другие факторы. Расстояния кажутся меньшими, чем в действительности, при наблюдении через водные пространства, лощины и долины, при наблюдении крупных и отдельно расположенных объектов. И наоборот, расстояния кажутся большими, чем в действительности, при наблюдении в сумерках, против света, в туман, при пасмурной и дождливой погоде. Все эти особенности следует учитывать при глазомерном определении расстояний. Точность глазомерного определения расстояний зависит также от натренированности наблюдателя. Опытным наблюдателем расстояния до 1000 м могут быть определены глазомерно с ошибкой 10-15%. При определении расстояния более 1000 м ошибки могут достигать 30%, а при недостаточной опытности наблюдателя 50%.

Определение расстояний по спидометру. Расстояние, пройденное машиной, определяется как разность показаний спидометра в начале и конце пути. При движении по дорогам с твердым покрытием оно будет на 3-5%, а по вязкому грунту на 8-12% больше действительного расстояния. Такие погрешности в определении расстояний по спидометру возникают от пробуксовки колес (проскальзывания гусениц), износа протекторов покрышек и изменения давления в шинах. Если необходимо определить пройденное машиной расстояние возможно точнее, надо в показания спидометра внести поправку. Такая необходимость возникает, например, пря движении по азимуту или при ориентировании с использованием навигационных приборов.

Величина поправки определяется перед маршем. Для этого выбирается участок дороги, который по характеру рельефа и почвенного покрова подобен предстоящему маршруту. Этот участок проезжают с маршевой скоростью в прямом и обратном направлениях, снимая показания спидометра в начале и конце участка. По полученным данным определяют среднее значение протяженности контрольного участка и вычитают из него величину этого же участка, определенную по карте или на местности лентой (рулеткой). Разделив полученный результат на длину участка, измеренного по карте (на местности), и умножив на 100, получают коэффициент поправки.

Например, если среднее значение контрольного участка равно 4,2 км, а измеренное по карте 3,8 км, то коэффициент поправки

К=((4,2-3,8)/3,8)*100 = 10%

Таким образом, если длина маршрута, измеренного по карте, составляет 50 км, то на спидометре будет отсчет 55 км, т. е. на 10% больше. Разница в 5 км и есть величина поправки. В некоторых случаях она может быть отрицательной.



Измерение расстояний шагами. Этот способ применяется обычно при движении по азимуту, составлении схем местности, нанесении на карту (схему) отдельных объектов и ориентиров и в других случаях. Счет шагов ведется, как правило, парами. При измерении расстоянии большой протяженности шаги более удобно считать тройками попеременно под левую и правую ногу. После каждой сотни пар или троек шагов делается отметка каким-нибудь способом и отсчет начинается снова. При переводе измеренного расстояния шагами в метры число пар или троек шагов умножают на длину одной пары или тройки шагов. Например, между точками поворота на маршруте пройдено 254 пары шагов. Длина одной пары шагов равна 1,6 м. Тогда Д =254Х1,6=406,4 м.

Обычно шаг человека среднего роста равен 0,7- 0,8 м. Длину своего шага достаточно точно можно определить по формуле

Д=(Р/4)+0,37,

где Д-длина одного шага в метрах

Р - рост человека в метрах.

Например, если рост человека 1,72 м, то длина его шага

Д=(1,72/4)+0,37=0,8 м.

Более точно длина шага определяется промером какого-нибудь ровного линейного участка местности, например дороги, протяженностью 200-300 м, который заранее измеряется мерной лентой (рулеткой, дальномером и т. п.). При приближенном измерении расстояний длину пары шагов принимают равной 1,5 м.

Средняя ошибка измерения расстояний шагами в зависимости от условий движения составляет около 2-5% пройденного расстояния.

Счет шагов может выполняться с помощью шагомера (рис.1). Он имеет вид и размеры карманных часов. Внутри прибора помещен тяжелый молоточек, который при встряхивании опускается, а под воздействием пружины возвращается в первоначальное положение. При этом пружина перескакивает по зубцам колесика, вращение которого передается на стрелки. На большой шкале циферблата стрелка показывает число единиц и десятков шагов, на правой малой-сотни, а на левой малой-тысячи. Шагомер подвешивают отвесно к одежде. При ходьбе вследствие колебания его механизм приходит в действие и отсчитывает каждый шаг.

Рис.1 Шагомер

Определение расстоянии по времени и скорости движения. Этот способ применяется для приближенного определения величины пройденного расстояния, для чего среднюю скорость умножают на время движения. Средняя скорость пешехода около 5, а при движении на лыжах 8-10 км/ч. Например, если разведывательный дозор двигался на лыжах 3 ч, то он прошел около 30 км.

Определение расстояний по соотношению скоростей звука и света. Звук распространяется в воздухе со скоростью 330 м/с, т. е. округленно 1 км за 3 с, а свет- практически мгновенно (300000 км/ч). Таким образом, расстояние в километрах до места вспышки выстрела (взрыва) равно числу секунд, прошедших от момента вспышки до момента, когда был услышан звук выстрела (взрыва), деленному на 3. Например, наблюдатель услышал звук взрыва через 11 с после вспышки. Расстояние до места вспышки

Д=11/3 = 3,7км.

Определение расстояний на слух. Натренированный слух-хороший помощник в определении расстояний ночью. Успешное применение этого способа во многом зависит от выбора места для прослушивания. Оно выбирается таким образом, чтобы ветер не попадал прямо в уши. Вокруг в радиусе нескольких метров устраняются причины шума, например сухая трава, ветки кустарника и т. п. В безветренную ночь при нормальном слухе различные источники шумов могут быть слышны на даль-ностях, указанных в табл. 1.

Таблица 1

Определение расстояний геометрическими построениями на местности. Этот способ может применяться при определении ширины труднопроходимых или непроходимых участков местности и препятствий (рек, озер, затопленных зон и т. п.). На рис.2 показано определение ширины реки построением на местности равнобедренного треугольника. Так как в таком треугольнике катеты равны, то ширина реки АВ равна длине катета АС. Точка А выбирается на местности так, чтобы с нее был виден местный предмет (точка В) на противоположном берегу, а также вдоль берега реки можно было измерить расстояние, равное ее ширине. Положение точки С находят методом приближения, измеряя угол АСВ компасом до тех пор, пока его значение не станет равным 45°.

Рис.2 Определение расстояний геометрическими построениями на местности.

Другой вариант этого способа показан на рис. 23,6. Точка С выбирается так, чтобы угол АСВ был равен 60°. Известно, что тангенс угла 60° равен 1/2, следовательно, ширина реки равна удвоенному значению расстояния АС. Как в первом, так и во втором случае угол при точке А должен быть равен 90°.

Определение расстояний по угловым размерам предметов основано на зависимости между угловыми и линейными величинами. Угловые размеры предметов измеряют в тысячных с помощью бинокля, приборов наблюдения и прицеливания. Расстояние до предметов в метрах определяют по формуле

Д = (B / У) * 1000,

где В-высота (ширина) предмета в метрах;

у-угловая величина предмета в тысячных. Например (см. рис. 17), угловой размер наблюдаемого в бинокль ориентира (отдельное дерево), высота которого 12 м, равен трем малым делениям сетки бинокля (0-15). Следовательно, расстояние до ориентира

Д=(12/15)*1000=800 м.

Определение расстояний по линейным размерам предметов заключается в следующем. С помощью линейки, расположенной на расстоянии 50 см от глаза, измеряют в миллиметрах высоту (ширину) наблюдаемого предмета. Затем действительную высоту (ширину) предмета в сантиметрах делят на измеренную по линейке в миллиметрах, результат умножают на постоянное число 5 и получают искомую высоту предмета в метрах.

Д = (Впред. / Влин.) * 5

Например, телеграфный столб высотой 6 м (рис.1) закрывает на линейке отрезок 10 мм. Следовательно, расстояние до него

Д=(600/10)*5=300 м.

Рис.1 Измерение расстояния до столба по линейным размерам предмета.

Точность определения расстояний по угловым и линейным величинам составляет 5-10% длины измеряемого расстояния. Для определения расстояний по угловым и линейным размерам предметов рекомендуется запомнить величины (ширину, высоту, длину) некоторых из них, приведенные в табл. 1.

Двигаясь по маршруту, туристы выполняют необходимые измерения на местности. Например, измеряют пройденное расстояние между опорными ориентирами дневного перехода, протяженность естественных препятствий (ширину реки в месте переправы, протяженность склона) и т.д. Ниже мы представляем информацию о распространенных в туризме способах измерений данных параметров.

Какими способами можно определить необходимые расстояния на местности? В туристской практике применяются простейшие способы определения расстояний на местности: на глаз, промером шагами, по линейным величинам наблюдаемых объектов, по времени и скорости движения. Глазомерная оценка - это самый быстрый, часто применяемый в походных условиях, но требующий большой предварительной тренировки способ определение расстояний. Чтобы развить свой глазомер, надо возможно чаще в разных условиях местности в различное время года и суток упражняться в оценке на глаз расстояний с обязательной проверкой их шагами или по карте. Прежде всего, необходимо научиться мысленно представлять и уверенно различать на любой местности несколько наиболее удобных в качестве эталонов расстояний. Начинать надо с расстояний 10, 50, 100м и, только твердо овладев ими, переходить к отрезкам от 200 до 1000м. Закрепив в зрительной памяти определенные эталонные отрезки, можно в дальнейшем мысленно сравнивать с ними интересующие расстояния (Алешин, Серебрянников, 1985). Тренируя глазомер, следует иметь в виду, что на оценку расстояний влияет ряд факторов, таких, как освещенность, характер местности, контраст рассматриваемых объектов с окружающим фоном и их размеры. Например, объекты кажутся ближе, чем находятся в действительности, если они ярко освещены на темном фоне или, наоборот, если наблюдать темные объекты на светлом фоне. Ближе кажутся и более крупные объекты по сравнению с мелкими объектами, находящимися на таком же расстоянии, а так же любые объекты при наблюдении их снизу вверх, например, от подножия горы к вершине. И наоборот, объекты "удаляются" от наблюдателя: в сумерки, при наблюдении против света и на закате солнца; в тумане, при пасмурной и дождливой погоде; при наблюдении сверху вниз, от вершины к подножию и в целом ряде иных случаев. Точность глазомерных измерений зависит от тренированности туристов, величины расстояния, условий наблюдения. Обычно опытный наблюдатель для расстояний 1-1,5км не делает ошибок более 10-15%. При оценке больших расстояний ошибка возрастает до 30% и даже 50%. Некоторое представление о глазомерной оценке расстояний дает таблица 1, в которой приведены предельные расстояния видимости объектов в дневное время для человека с нормальным зрением (Алешин, Серебрянников, 1985).

Таблица 1.

Предельные расстояния видимости определенных объектов для человека с нормальным зрением.

Промер расстояний шагами - простой и достаточно точный способ определения расстояний. Его применяют при измерении относительно коротких отрезков пути: двигаясь от одного ориентира к другому, считают количество парных шагов. Длину парного шага можно определить по эмпирической формуле: L=2(H/4+37) где L - длина двойного шага, H - рост человека (см), а 4 и 37 - постоянные числа. Но измерение будет более точным, если знать количество своих парных шагов, соответствующее 100м на местности. Определить свое количество пар шагов в 100м несложно. Известно, что человек среднего роста при движении по тропе на 100м делает 62-66 парных шага. Следует правда отметить, что длина шага меняется при движении в разных условиях (по дороге, траве, мху, зарослям, вверх или вниз по склону). Поэтому в известную Вам величину пар шагов в 100м обычной дороги, необходимо внести поправки на данные конкретные условия. Точность измерения шагами зависит от тренировки туриста и характера местности. При овладении определенными навыками на ровной местности ошибки измерений не превышают 2-4% пройденного пути (Алешин, Серебрянников, 1985).

Определение расстояний по времени и скорости движения применяют в походе в качестве вспомогательного способа для общего ориентирования на местности. Данный способ удобен при измерении протяженных отрезков пути (например, длины отдельных переходов вдоль линейных ориентиров местности). Время движения можно определить довольно точно по наручным часам. Сложнее обстоит дело с определением в походных условиях средней скорости движения группы. Причем трудности возникают как с определением абсолютной величины скорости, так и с поддержанием ее постоянства. По ровной дороге средняя скорость человека (быстрым шагом) - 5-6км в час. Разумеется скорость группы с учетом переносимого груза в пешем походе ниже. В конце «рабочего» дня с накоплением усталости скорость движения так же падает. В каждом конкретном случае надо пытаться определить скорость движения группы по известным отрезкам пути. Измерения скорости проводят несколько раз в первые дни похода и затем можно использовать полученное среднее значение скорости, с поправками на физическое состояние группы, характер конкретного участка маршрута и пр.

Способ определения расстояний по известным линейным размерам наблюдаемого объекта применяют, если прямое измерение расстояния до данного объекта шагами по каким-либо причинам невозможно. Сущность этого способа представлена на Рис 3. Наблюдатель держит линейку, (например, линейку подложки спортивного компаса) перед собой перпендикулярно лучу зрения на расстоянии 50см от глаз и определяет по ней величины отрезка (в данном случае это 2см), закрывающего наблюдаемый объект (дерево высотой 20м). Из правила подобия треугольников следует, что искомое расстояние до дерева равно 2000см х 50см / 2см = 50000см (500м).

Рис.3

Ширину реки (или иного препятствия) на местности можно измерить т.н. геометрическим способом (шагами с последующим переводом полученного значения в метры (Федотов, Востоков, 2003)). Для этого (Рис. 4) вначале выбирают на краю противоположного берега реки какой-либо заметный ориентир. Затем становятся напротив выбранного ориентира и под прямым углом к направлению на ориентир, вдоль берега отсчитывают определенное число шагов, например 50. На данное место устанавливают вешку и продолжают идти в том же направлении, отсчитывая такое же число шагов. Далее изменяют направление движения и идут под прямым углом от берега до тех пор, пока не окажутся на одной прямой с вешкой и выбранным ориентиром (в створе). Число шагов от берега до нашей остановки в створе и есть искомая ширина реки в шагах. Перевести его в метры не составляет труда, зная число своих пар шагов в 100м. Средняя длина шага - 0.7-0.8м.

Какими способами можно определить направления движения на местности (стороны света)? Очевидно, что самым распространенным способом определения необходимого направления движения туристов в походе является применение специального инструмента - компаса. Компас указывает направления на все стороны света; с помощью компаса можно измерить необходимые направления движения. Порядок измерения азимутов на карте был представлен нами выше. В этом разделе мы излагаем порядок определение азимута на выбранный ориентир (этот технический прием называют «визированием» или «определением пеленга»). Прием визирования используют, в частности, при определении точки стояния способом обратной засечки.

Рис. 4 Схема измерения ширины реки геометрическим способом. Расстояние «ВГ» равно ширине реки (расстоянию от точки А на одном берегу до выбранного, наблюдаемого ориентира на другом берегу) (по Вяткину Л.А. с соавт., 2001).

Чтобы измерить нужный азимут длинную грань подложки компаса (указатель направления на подложке) направляют на целевой ориентир местности. При этом удерживают компас горизонтально на уровне глаз и смотрят на ориентир вдоль грани подложки. Далее вращением шкалы колбы компаса добиваются того, чтобы красная стрелка компаса указывала на значение «ноль градусов» шкалы азимутов, соответствующее направлению на север (при этом стрелка располагается внутри нанесенных на дне колбы специальных рисок указателя севера). Наконец, снимают значение нужного азимута на шкале напротив черты-риски азимутов.

Если компаса в распоряжении туриста нет, то стороны света можно определить, например, по небесным светилам (смотрите так же лекцию «Основы техники ориентирования на местности»). В солнечный день

стороны света приблизительно можно определить по тени от предмета. На ровной поверхности земли втыкается палка (Рис. 5), так чтобы она отбрасывала отчетливую тень. Оконечность тени отмечается на земле (например, камнем). Далее следует подождать, по крайней мере, 15 минут, чтобы тень сместилась на несколько сантиметров в сторону от первоначального положения и поместить вторую метку на оконечность сместившейся тени. Внимание! Чем больше времени ожидания, тем точнее конечный результат измерения. Линия, проведенная через две метки, указывает направление восток-запад, причем первая метка всегда будет западной.

Стороны света можно так же определить по Солнцу и механическим часам. Положив часы горизонтально, и направив часовую стрелку на Солнце, мы получим направление линии север-юг как биссектрису между часовой стрелкой и направлением на цифру 12 (Рис. 6). Естественно, что до полудня надо делить пополам дугу, которую часовой стрелке осталось пройти до 12 часов, а после полудня - дугу, которую стрелка уже прошла после 12 часов (Алешин, Серебрянников, 1985). Данный способ определения вновь указан для местного (солнечного) времени и он «сработает», если в группе какие-либо часы установлены на данное время. В обычном же случае следует вводить поправку на декретное, летнее время. При определении направлений с помощью часов - чем выше Солнце, тем больше ошибка измерения.

Надежно определить стороны Света без компаса в лесу можно с помощью просек и квартальных столбов. Просеки обычно разбивают лесной массив на квадраты со стороной 2км (кварталы). Кварталы нумеруют в данном лесном хозяйстве по направлению с запада на восток (возрастание номера слева направо), доходят до границы соседнего лесного хозяйства и продолжают нумерацию в соответствии с правилами переноса.

Рис. 6

Таким образом, номера кварталов, указанные на квартальном столбе, стоящем на пересечении просек, изменяются на одну единицу с запада на восток, а резкий скачок в нумерации более чем на две единицы указывает на более южный квартал (Рис.7).

Какую технику применяют туристы для точного движения в заданном направлении с использованием компаса? Точное движение по азимуту производят следующим образом (Рис. 8).

· Устанавливают нужное показание азимута на шкале компаса с учетом магнитного склонения местности (с данными операциями Вы уже знакомы).

· Затем, удерживая компас перед собой, поворачиваются всем телом, вправо или влево, так чтобы красная стрелка компаса установилась между рисок указателя севера, начерченных на дне колбы (тогда значение шкалы 0?, соответствующее Северу, совпадет с направлением на Север местности).

· В результате длинная грань подложки (указатель направления на подложке) спортивного компаса покажет нужное направление движения.


Рис. 8.

Турист строго в указанном компасом направлении намечает для себя какой-нибудь объект (дерево, куст и т. п.). Этот объект и будет первым промежуточным ориентиром. Нужно только чтобы ориентир был достаточно заметным и не терялся из виду при приближении к нему. Дойдя до первого промежуточного ориентира, таким же порядком, по компасу определяют второй промежуточный ориентир и двигаются, пока не достигнут его. Достигнув второго промежуточного ориентира, находят себе третий ориентир и т. д. При отсутствии видимых ориентиров в направлении движения (при продолжительном движении в условиях ограниченной видимости), туристы передвигаются просто в направлении, указанному боковой гранью подложки компаса, удерживая красную стрелку между рисок указателя Севера на дне колбы компаса.


Для приближенного и измерения расстояний на местности используются следующие простейшие способы: глазомерный, по измеренным угловым величинам местных предметов, промером шагами, по времени движения, по звуку и вспышке от выстрела, на слух.

Глазомерный способ - основной, самый простой и быстрый, наиболее доступный каждому в любых условиях. Однако точный глазомер приобретается не сразу. Он вырабатывается путем систематической тренировки, проводимой в разнообразных условиях местности, в различное время года и суток.

Чтобы развить свой глазомер, необходимо как можно чаще упражняться в определении на глаз расстояний с обязательной проверкой их шагами, по карте или другим способом. Тренировку надо начинать с коротких расстояний — 10, 50, 100 метров. Хорошо освоив эти дистанции, можно переходить последовательно к большим — 200, 400, 800, 1000 метров. Потом можно легко определять и большие расстояния.

На точность глазомерного способа указывают и влияют такие побочные явления, как:

Более предметы кажутся всегда ближе мелких, расположенных на том же расстоянии.
- Чем меньше промежуточных предметов находится между глазом и наблюдаемым предметом, тем этот предмет кажется ближе.
- При наблюдении снизу вверх, от подошвы горы к вершине, предметы кажутся ближе, а при наблюдении сверху вниз - дальше.

Глазомерная оценка расстояний может контролироваться, когда несколько человек измеряют одну и ту же дистанцию независимо друг от друга. Беря среднее из всех этих определений, получают наиболее точный замер. Для грубой оценки расстояний иногда пользуются примерными данными, приведенными в таблице ниже.

Каждый может уточнить и дополнить эту таблицу применительно к своим наблюдениям. Точность глазомерного способа зависит от натренированности наблюдателя, от величины определяемых расстояний и от условий наблюдения. Для расстояний до 1000 метров надо добиться тренировкой определения величин с ошибкой не более 10-15%.

Способ определения и измерения расстояний на местности по измеренным угловым величинам местных предметов.

Если известна линейная величина наблюдаемого предмета (высота, ширина или длина), то для определения расстояния до него необходимо измерить угол (в тысячных), под которым виден этот предмет. И по соотношению линейной (известной заранее) и угловой (измеренной) величин этого предмета, по можно определить расстояние до него.

Способ определения и измерения расстояний на местности парами шагов.

При измерении расстояний шагами надо натренироваться в ходьбе ровным шагом, особенно в неблагоприятных условиях. На подъемах и спусках, при движении по кочковатому лугу, в кустарнике и т. д. Кроме того, надо знать длину своего шага в метрах. Она определяется из промера шагами линии, длина которой известна заранее и должна быть не менее 200-300 метров.

При измерении расстояний шаги считают парами, обычно под левую ногу. После каждой сотни пар шагов счет начинается снова. Чтобы не сбиться со счета, полезно каждую пройденную сотню пар шагов на бумаге или же загибать последовательно пальцы рук, или любым способом. Ошибки определения расстояний шагами, при ровном хорошо выверенном шаге, в среднем достигают 2-4% измеренного расстояния.

Способ определения и измерения расстояний на местности по времени и скорости движения.

Определять расстояния можно по времени движения, если вы приблизительно знаете свою среднюю скорость движения. Так, например, если средняя скорость движения походным шагом равна 5 км/час, когда подъемы и спуски не более 5 градусов, то, пройдя 45 минут по времени, можно ориентировочно сказать, что вами пройдено 3,75 км.

Способ определения и измерения расстояний до стреляющих орудий.

Определение расстояний до стреляющих орудий основано на обнаружении, в момент выстрела, вспышки и образования дыма. Затем, зная, что скорость распространения звука в воздухе равна 330 м/сек, то есть округленно 1 км за 3 секунды, отсчитываем время в секундах от момента вспышки до момента слухового восприятия звука (или взрыва) и, поделив его на три, определяем расстояние до орудий в километрах.

При отсутствии часов отсчитывать секунды можно путем порядкового счета «про себя» двухзначных чисел (21, 22, 23, 24), начиная с момента вспышки от выстрела до прихода звука от нее. Отсчет каждого из этих чисел занимает примерно одну секунду. Навыки такого счета, соразмерного ходу секундной стрелки, довольно быстро приобретаются уже после 2- 3 тренировок в отсчете двухзначных чисел.

Способ определения и измерения расстояний на слух.

Ночью в условиях плохой видимости расстояния часто приходится оценивать на слух. Для этого надо уметь определять по характеру звуков их источники и знать, с каких примерно расстояний можно услышать эти звуки ночью . При нормальном слухе и благоприятных акустических условиях дальность слышимости можно приближенно считать такой, какой она дана в таблице ниже.

Эти данные меняются в зависимости от конкретных условий, в которых производится наблюдение, поэтому должны учитываться каждым наблюдателем на основе его личного опыта.

По материалам книги «Карта и компас — мои друзья».
Клименко А.И.

Прямые методы определения линейных расстояний

Точные измерения производятся с помощью мерной рулетки или стальной ленты, длиной 10 или 20 метров. Иногда, применяют длинный шнур (в виде толстого провода), на котором ставятся метки: белые - через каждые 2м и красные - через 10м, с закреплёнными, на концах, шпильками (стальными штырями или деревянными кольями). Важно, чтобы измерительные приспособления не растягивались и были точно отмерены, выверены по эталону.

При обмерах полей и промеров по извилистым контурам, на местности, до сих пор применяют полевой землемерный циркуль-измеритель «Ковылёк» ("двухметровка", старое название - ), в виде буквы А. Это раскладывающаяся деревянная вилка, с постоянным раствором ножек, равным 2 метра.

Во время работ по топографической съёмке местности - ведут журнал измерений, составленный по стандартной форме, куда сразу заносятся номера точек стояния и результаты текущих измерений. Дополнительно, составляют, от руки - абрис (схематический чертёж снимаемой, в данный момент, местности).

Приблизительные, грубые измерения с невысокой точностью, производят шагомерно - парами своих шагов (равных, примерно, вашему росту, минус 10-20 сантиметров, в зависимости от темпа ходьбы, степени пересечённости местности и угла наклона земной поверхности). Результаты счёта - последовательно заносятся, записываются в блокнот, в виде таблицы данных для дальнейшего пересчёта пройденных дистанций и отрезков пути в метры.


Дистанционные визуальные методы определения расстояний

Дистанционно-визуальные способы измерений длин - они применяются в тех случаях, когда существует непреодолимая преграда, препятствие (река, болото, озеро, глубокий овраг, горное ущелье), но сохраняется прямая видимость, достаточная для производства измерений.

Ширину реки можно определить геометрическим глазомерным способом, путём построения вдоль её берега двух равных прямоугольных треугольников. Выбрав на противоположном берегу (в направлении, перпендикулярном руслу) какой-нибудь заметный предмет "А" (дерево, большой камень и т.п.), расположенный у самой кромки воды, вбивают напротив него колышек "В" (рисунок 1). Вдоль берега, перпендикулярно к линии АВ, отмеряют рулеткой или шагами, например 20м и вбивают колышек "С". На продолжении линии ВС в расстоянии, равном также 20 м, вбивают еще один колышек "Д". От колышка "Д" в направлении ДЕ, перпендикулярном (направления задаются при разведении рук в стороны и сведении их ладонями, прямо перед собой или с помощью крестообразного эккера) к линии ДВ, надо идти от реки до тех пор, пока колышек "С" не окажется на одной линии с предметом "А". Так как треугольники ABC и ЕДС абсолютно и полностью равны, то ширина реки будет равна расстоянию ДЕ минус ВК (интервал до уреза воды). Если плечи ДС и СВ не равны (нет возможности пройти вдоль берега; мешают густые заросли), то AB = DE*BC/CD

Определить ширину реки можно и не отходя от воды, построением на местности прямоугольного равнобедренного треугольника АДВ (рис. 2). Построив на точке "А" прямой угол, отходят в направлении АС до такой точки "Д", из которой предмет "В" будет засекаться под углом 45° (в этом случае, АВ=АД). Для разбивки углов применяется самодельный крестообразный эккер (в виде квадратного листа бумаги с загнутыми, кверху, уголками или, установленной на подставку, плоской деревянной крестовины с четырьмя вбитыми, по квадрату, шпильками), с помощью которого строят углы 45° и 90° от ходовой линии (основной магистрали). На точке "А", для лучшей её видимости при расстановке вешек в створе, ставится хорошо заметный "макет" (например, крепится белый лист бумаги, обращённый в сторону пункта "Д").

Экспресс-метод, без установки эккера на штативе - две перекрещенных прямых веточки, одинаковой длины, держать горизонтально на уровне глаз так, чтобы одна ветка была параллельна течению реки и направлена на точку "А" (смотреть, прикрыв один глаз). Тогда, линия угла-сорокапятки, проходящая через концы веточек - смотрится-визируется закрыв другой глаз и слегка наклонив голову. Можно визировать и с помощью шкалы компаса или циферблата наручных часов (в качестве направляющей можно использовать измерительную линейку, прикладывая её ребром через центр лимба).

Имея возможность провести на местности триангуляцию (померить угломером или по лимбу компаса) и (в полевых условиях, это возможно проделать без калькулятора и точных , при помощи транспортира, линейки и циркуля), можно визировать под любым углом, а затем - считать по формуле:
АВ = АД * tg АДВ.

Если угол равен 45 градусов, тогда tg(45°)=1 и, соответственно, АВ=АД
tg(64°) = 2 и АВ=АД*2
tg(72°) = 3 и АВ=АД*3


Рис.2

Достаточно точно ширина реки может быть установлена способом прямой засечки (рис. 3). Для этого на противоположном берегу выбирают приметный предмет "С", а вдоль берега, на котором находится исследователь, прокладывают базис АВ и измеряют длину его. Из точек "А" и "В" делают засечки на точку "С", т. е. измеряют углы CAB и ABC. Построив с помощью мерной линейки и треугольник ABC, можно получить в принятом для базиса АВ масштабе искомую ширину реки.

Тем же способом ширина реки может быть определена и без непосредственного измерения углов CAB и ABC, с помощью графических засечек на планшете. Надо отложить на бумаге длину базиса AB в выбранном масштабе, затем из концов базиса, ориентировав, стоя на угловых точках, планшетку, прочертить направления на какой-нибудь видимый предмет "С" противоположного берега. Тогда, ширину реки можно определить графически - на чертеже, пересчитав по его масштабу.


Рис.3

Весьма прост и удобен приближенный прием определения ширины реки при помощи травинки или нитки. Стоя на берегу реки в точке "А", замечают на противоположном ее берегу два приметных предмета (например лодку В и дерево "С"), расположенных близ уреза (рис. 4). Затем, взяв травинку (нитку) за ее концы вытянутыми перед собой руками, замечают ее длину "d", которой закрывается промежуток ВС между выбранными предметами (смотреть надо одним глазом). Затем, сложив травинку пополам, отходят от реки до тех пор (точка "D"), пока промежуток ВС не будет закрыт травинкой. Пройденное расстояние AD будет равно ширине реки.


Рис.4

Существует и такой, самый быстрый, но весьма приближённый способ определения ширины реки - закрывают правый глаз и направляют поднятый вверх большой палец вытянутой горизонтально руки (рис. 5) в направлении приметного предмета "А" противоположного берега. Затем, поменяв открытый глаз (так появляется стереоскопический эффект в виде стереопары изображений из двух различных точек наблюдения), замечают, что палец как бы отскочил вбок от наблюдаемого предмета в точку "В". Оценив на глаз расстояние АВ, в метрах (предполагая, примерно, высоту или ширину предметов), и умножив его на 10, получают примерную ширину реки. Человек при таких измерениях - выступает как стереофотограмметрический прибор.


Рис.5

_Toc293671468

Введение 2

1. Понятие тысячной и способы измерения её 3

2. Глазомерный способ 5

3. Способ измерения по угловым размерам 7

4. Способ измерения по линейной величине 10

5. Способ измерения шагами 11

6. Способ измерения по времени и скорости движения 12

7. Способ измерения по соотношению скорости света и звука 13

8. Способ измерения на слух 13

Заключение 18

Список литературы 19

Приложение 20

Введение

Организация и ведение боевых действий неразрывно связаны с ориентированием на местности. Оно необходимо при постановке боевых задач подразделениям и огневым средствам, выдерживании направления действий, целеуказании, нанесении на рабочую карту результатов разведки противника и местности, управлении подразделениями в ходе боя. Потеря ориентировки в бою может привести к невыполнению боевой задачи и неоправданным потерям личного состава и техники. Поэтому умение быстро и точно ориентироваться на местности в любых условиях является одним из важнейших элементов полевой выучки офицеров.

Применение в бою современных огневых средств требует производства точных измерений и расчетов по привязке огневых и стартовых позиций, определение расстояний до целей. С этой целью в войсках используются различного рода измерения с помощью разных приборов. Для измерений на местности широко используются топографические карты.

Однако в современном бою, когда успех зависит от быстрого принятия решения, когда на принятие решения требуется короткое время, необходимо, чтобы каждый военнослужащий, а тем более офицер, должен уметь быстро и с высокой точностью производить измерения и расчеты на местности, особенно по определению расстояний до целей.

Это особенно важно для командиров мотострелковых подразделений. Командиры мотострелковых подразделений при ведении боя обязаны управлять подразделениями и огнем на местности, определение расстояний и углов при разведке целей играют очень важную роль для быстрейшего уничтожения противника.

Определение расстояний на местности командиру необходимо для управления подразделением в бою. Особенно большое влияние определение расстояний оказывает на ведение огня из различных видов оружия.

1. Понятие тысячной и способы измерения её

Тысячная - единица измерения углов, принятая в артиллерии и равняющаяся одной шеститысячной части оборота. Название происходит от приблизительного равенства такой единицы измерения углов миллирадиану, то есть тысячной доле радиана (составляющей 1/(1000 × 2 π) ≈ 1/6283 оборота). Синонимом для этой единицы измерения угла является малое деление угломера.

Понятие тысячной принято во всех странах мира, и применяется для введения горизонтальных поправок ведения огня стрелкового оружия и артиллерийских систем, а также определение расстояний и дистанций. Тысячные записываются и читаются следующим образом:

тысячная 0-01, читается как ноль, ноль один

тысячных 0-05, читается как ноль, ноль пять

тысячных 0-10, читается как ноль, десять

тысячных 1-50, читается как один, пятьдесят

тысячных 15-00, читается как пятнадцать, ноль ноль

При использовании оптических приборов с делениями в тысячных нужно учитывать, что есть русская тысячная, которая делит круг на 6000 частей и есть немецкая тысячная, которая делит круг на 6400 частей.

Исходя из равенства 1 оборота 2π радиан или 360 градусам, существуют следующие соотношения между всеми этими единицами измерения:

· 1 тысячная ≈ 0,00016(6) оборота

· 1 тысячная ≈ 0,001047 радиана

· 1 тысячная = 0,06 градуса = 3,6 угловой минуты = 3 угл. минуты 36 угл. секунд

· 1 тысячная = 0,06(6) града

· 1 оборот = 6000 тысячных

· 1 радиан ≈ 954,92 тысячных

· 1 угловая секунда = 0,004629(629) тысячной

· 1 угловая минута = 0,277(7) тысячной

· 1 градус = 16,66(6) тысячных

· 1 град = 15 тысячных

Большим удобством такой нестандартной единицы измерения углов является хорошая приспособленность к вычислениям линейных и угловых размеров объектов на местности без каких-либо средств механизации счёта. Пусть объект длиной W наблюдается с дистанции L под небольшим углом α (то есть выполняется условие L >> W , очень часто встречающееся в артиллерийской практике). Тогда при выражении угла α в радианной мере имеет место:

и, заменяя радианную меру на тысячные, получаем в итоге:


Для большинства практических расчётов используется приближённый вариант, но в ряде случаев возникающая при этом погрешность в 4,5 % недопустима и тогда коэффициент 0,955 не отбрасывается. Упрощённое равенство называется формулой тысячных. Из этой формулы следует правило для лучшего запоминания соотношения: «веха высотой 1 метр, удалённая от наблюдателя на 1 километр, видна под углом в 1 тысячную».

Формула тысячных применима при не слишком больших углах, когда синус угла приближённо равен самому углу в радианной мере. Условной границей применимости считается угол в 300 тысячных (18 градусов).

2. Глазомерный способ

Глазомерный способ - основной способ и самый простой при определении расстояний, доступный для каждого командира. Сущность способа - сравнение определяемого расстояния с известным или запечатленным в памяти.

Этот способ не дает высокой точности в определении расстояний, но при определенной тренировке можно добиться точности до 10 м. Чтобы развить свой глазомер нужно постоянно упражняться в определении расстояний на местности.

Глазомерно расстояние определяют путем сравнения с известным на местности отрезком. На точность глазомерного определения расстояния оказывают влияние освещенность, размеры объекта, его контраст с окружающим фоном, прозрачность атмосферы и другие факторы. Расстояния кажутся меньшими, чем в действительности, при наблюдении через водные пространства, лощины и долины, при наблюдении крупных и отдельно расположенных объектов.

И наоборот, расстояния кажутся большими, чем в действительности, при наблюдении в сумерках, против света, в туман, при пасмурной и дождливой погоде. Все эти особенности следует учитывать при глазомерном определении расстояний.

Точность глазомерного определения расстояний зависит также от натренированности наблюдателя. Опытным наблюдателем расстояния до 1000 м могут быть определены глазомерно с ошибкой 10-15%. При определении расстояния более 1000 м ошибки могут достигать 30%, а при недостаточной опытности наблюдателя 50%.

Одним из способов измерения расстояний на местности это использование известных по протяженности расстояний на местности (линии электропередач - расстояние между опорами, расстояние между линиями связи и т.п.).

Для грубой оценки расстояний на местности можно использовать следующие данные (табл.1):

Таблица 1

Расстояния видимости (различимости) некоторых объектов невооруженным глазом


Для каждого человека данная таблица может быть уточнена им самим. Чтобы развить свой глазомер, необходимо как можно чаще упражняться в определении на глаз расстояний с обязательной проверкой их шагами, по карте или другим способом.

Тренировку надо начинать с коротких расстояний (10, 50, 100 м). Хорошо освоив эти дистанции, можно переходить последовательно к большим (200, 400, 800, 1000 м). Потом можно легко определять расстояния и большие.

более крупные предметы кажутся всегда ближе мелких, расположенных на том же расстоянии;

чем меньше промежуточных предметов находится между глазом и наблюдаемым предметом, тем этот предмет кажется ближе;

при наблюдении снизу вверх, от подошвы горы к вершине, предметы кажутся ближе, а при наблюдении сверху вниз - дальше.

Глазомерная оценка расстояний может контролироваться, когда несколько человек измеряют одну и ту же дистанцию независимо друг от друга. Беря среднее из всех этих определений, получают наиболее точный замер.

. Способ измерения по угловым размерам

Для применения этого способа надо знать линейную величину наблюдаемого предмета (его высоту, длину либо ширину) и тот угол (в тысячных), под которым виден данный предмет. Угловые размеры предметов измеряют с помощью бинокля, приборов наблюдения и прицеливания и подручными средствами. Расстояние до предметов в метрах определяют по формуле:


где В - высота (ширина) предмета в метрах, У - угловая величина предмета в тысячных.

Например, высота железнодорожной будки составляет 4 метра, военнослужащий видит ее под углом 25 тысячных (толщина мизинца). Тогда расстояние до будки составит:


Или военнослужащий видит танк «Леопард-2» под прямым углом сбоку. Длина этого танка - 7 метров 66 сантиметров. Предположим, что угол наблюдения составляет 40 тысячных (толщина большого пальца руки). Следовательно, расстояние до танка - 191,5 метров.

Чтобы определить угловую величину подручными средствами, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0-02). Отсюда легко определить угловую величину для любых отрезков.

Например, для отрезка в 0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Точность определения расстояний по угловым величинам составляет 5-10% длины измеряемого расстояния.

Чтобы определить угловую величину, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0- 02). Отсюда легко определить угловую величину для любых отрезков (рис. 1).

Рис.1. Определение угловой величины для любых отрезков

Например, для отрезка в0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Проще всего выучить наизусть стандартные значения тысячных:

Таблица 2

Угловые величины (в тысячных долях дистанции)

Наименование предметов

Размер в тысячных

Толщина большого пальца руки

Толщина указательного пальца

Толщина среднего пальца

Толщина мизинца

Патрон по ширине дульца гильзы (7,62 мм)

Гильза по ширине корпуса

Карандаш простой

Спичечная коробка по длине

Спичечная коробка по ширине

Спичечная коробка по высоте

Толщина спички


4. Способ измерения по линейной величине

Определение расстояний по линейным размерам предметов заключается в следующем. С помощью линейки, расположенной на расстоянии 50 см от глаза, измеряют в миллиметрах высоту (ширину) наблюдаемого предмета. Затем действительную высоту (ширину) предмета в сантиметрах делят на измеренную по линейке в миллиметрах, результат умножают на постоянное число 5 и получают искомую высоту предмета в метрах.

Например, телеграфный столб высотой 6 м (см. рисунок) закрывает на линейке отрезок 10 мм.

Рис.2. Определение расстояний по линейным размерам предмета

Следовательно, расстояние до него:


Точность определения расстояний по линейным величинам составляет 5-10% длины измеряемого расстояния.

Для определения расстояний по угловым и линейным размерам предметов рекомендуется запомнить величины (ширину, высоту, длину) некоторых из них, либо иметь эти данные под рукой (на планшете, в записной книжке). Размеры наиболее часто встречаемых объектов приведены в Приложении.

5. Способ измерения шагами

измерение расстояние видимость размер

Этот метод определения расстояний в боевой обстановке имеет ограниченное применение

Этот способ применяется обычно при движении по азимуту, составлении схем местности, нанесении на карту (схему) отдельных объектов и ориентиров и в других случаях. Счет шагов ведется, как правило, парами. При измерении расстоянии большой протяженности шаги более удобно считать тройками попеременно под левую и правую ногу. После каждой сотни пар или троек шагов делается отметка каким-нибудь способом и отсчет начинается снова. При переводе измеренного расстояния шагами в метры число пар или троек шагов умножают на длину одной пары или тройки шагов. Например, между точками поворота на маршруте пройдено 254 пары шагов. Длина одной пары шагов равна 1,6 м.

Тогда Д =254Х1,6=406,4 м.

Обычно шаг человека среднего роста равен 0,7- 0,8 м. Длину своего шага достаточно точно можно определить по формуле

Д=(Р/4)+0,37,

где Д-длина одного шага в метрах

Р - рост человека в метрах.

Например, если рост человека 1,72 м, то длина его шага

Д=(1,72/4)+0,37=0,8 м.

Более точно длина шага определяется промером какого-нибудь ровного линейного участка местности, например дороги, протяженностью 200-300 м, который заранее измеряется мерной лентой (рулеткой, дальномером и т. п.). При приближенном измерении расстояний длину пары шагов принимают равной 1,5 м.

Средняя ошибка измерения расстояний шагами в зависимости от условий движения составляет около 2-5% пройденного расстояния.

Счет шагов может выполняться с помощью шагомера (рис.3).

Он имеет вид и размеры карманных часов. Внутри прибора помещен тяжелый молоточек, который при встряхивании опускается, а под воздействием пружины возвращается в первоначальное положение. При этом пружина перескакивает по зубцам колесика, вращение которого передается на стрелки. На большой шкале циферблата стрелка показывает число единиц и десятков шагов, на правой малой-сотни, а на левой малой-тысячи. Шагомер подвешивают отвесно к одежде. При ходьбе вследствие колебания его механизм приходит в действие и отсчитывает каждый шаг.


Рис.3 Шагомер

6. Способ измерения по времени и скорости движения

Этот способ применяется для приближенного определения величины пройденного расстояния, для чего среднюю скорость умножают на время движения. Средняя скорость пешехода около 5, а при движении на лыжах 8-10 км/ч. Например, если разведывательный дозор двигался на лыжах 3 ч, то он прошел около 30 км.

7. Способ измерения по соотношению скорости света и звука

Этот способ позволяет быстро определить расстояние до стреляющих орудий, минометов, танков и др. огневых средств.

Звук распространяется в воздухе со скоростью 330 м/с, т. е. округленно 1 км за 3 с, а свет- практически мгновенно (300000 км/ч). Таким образом, расстояние в километрах до места вспышки выстрела (взрыва) равно числу секунд, прошедших от момента вспышки до момента, когда был услышан звук выстрела (взрыва), деленному на 3. Например, наблюдатель услышал звук взрыва через 11 с после вспышки. Расстояние до места вспышки Д=11/3 = 3,7км.

8. Способ измерения на слух

Ночью и в туман, когда наблюдение ограничено или вообще невозможно (а на сильно пересеченной местности и в лесу, как ночью, так и днем) на помощь зрению приходит слух.

Почти все звуки, означающие опасность, производятся человеком. Поэтому если военнослужащий слышит даже самый слабый подозрительный шум, он должен замереть на месте и слушать. Возможно, что недалеко от него затаился враг. Если противник начнет двигаться первым, выдав тем самым свое месторасположение, то он первым и погибнет. Если это сделает разведчик, такая участь постигнет его.

В тихую летнюю ночь даже обычный человеческий голос на открытом пространстве слышно далеко, иногда на полкилометра. В морозную осеннюю или зимнюю ночь всевозможные звуки и шумы слышны очень далеко. Это касается и речи, и шагов, и звяканья посуды либо оружия. В туманную погоду звуки тоже слышны далеко, но их направление определить трудно. По поверхности спокойной воды и в лесу, когда нет ветра, звуки разносятся на очень большое расстояние. А вот дождь сильно глушит звуки. Ветер, дующий в сторону военнослужащего, приближает звуки, а от него - удаляет. Он также относит звук в сторону, создавая искаженное представление о местонахождении его источника. Горы, леса, здания, овраги, ущелья и глубокие лощины изменяют направление звука, создавая эхо. Порождают эхо и водные пространства, способствуя его распространению на большие дальности.

Звук меняется, когда источник его передвигается по мягкой, мокрой или жесткой почве, по улице, по проселочной или полевой дороге, по мостовой или покрытой листьями почве. Необходимо учитывать, что сухая земля лучше передает звуки, чем воздух. Ночью звуки особенно хорошо передаются через землю. Потому часто прислушиваются, приложив ухо к земле или к стволам деревьев.

Натренированный слух - хороший помощник в определении расстояний ночью. Успешное применение этого способа во многом зависит от выбора места для прослушивания. Оно выбирается таким образом, чтобы ветер не попадал прямо в уши. Вокруг в радиусе нескольких метров устраняются причины шума, например сухая трава, ветки кустарника и т. п. В безветренную ночь при нормальном слухе различные источники шумов могут быть слышны на дальностях, указанных в табл. 3.

Таблица 3

Средняя дальность слышимости различных звуков днем на ровной местности, км (летом)

Источник звука (действия противника)

Слышимость звука

Характерные звуковые признаки

Шум двигающегося поезда

Паровозный или пароходный гудок, заводская сирена

Стрельба очередями из винтовок и пулеметов

Выстрел из охотничьего ружья

Автомобильный сигнал

Топот лошадей на рыси по мягкому грунту

Топот лошадей на рыси по шоссе

Крик человека

Ржание лошадей, лай собак

Разговорная речь

Всплеск воды от весел

Звяканье котелков, ложек

Переползание

Движение пехоты в строю по грунту

Ровный глухой шум

Движение пехоты в строю по шоссе


Стук весел о борт лодки

Отрывка окопов вручную

Удары лопаты по камням

Вбивание деревянных колье вручную

Вбивание деревянных колье механическим способом


Рубка и спиливание деревьев ручным способом (топором, ручной пилой)

Резкий стук топора, визг пилы, прерывистый звук бензинового двигателя, глухой удар о землю спиленного дерева

Спиливание деревьев бензопилой


Падение дерева


Движение автомобилей по грунтовой дороге

Ровный шум моторов

Движение автомобилей по шоссе


Движение танков, САУ, БМП по грунту

Резкий шум двигателей одновременно с резким металлическим лязгом гусениц

Движение танков, САУ, БМП по шоссе


Шум двигателя стоящего танка, БМП

Движение буксируемой артиллерии по грунту

Резкий отрывистый грохот металла и шум двигателей

Движение буксируемой артиллерии по шоссе


Стрельба артиллерийской батареи (дивизиона)

Выстрел из орудия

Стрельба из минометов

Стрельба из крупнокалиберных пулеметов

Стрельба из автоматов

Одиночный выстрел из винтовки


Существуют определенные способы, помогающие слушать ночью, а именно:

· лежа: приложить ухо к земле;

· стоя: один конец палки прислонить к уху, другой конец упереть в землю;

· стоять, слегка наклонившись вперед, перенеся центр тяжести тела на одну ногу, с полуоткрытым ртом, - зубы являются проводником звука.

Обученный военнослужащий при подкрадывании, если только ему дорога жизнь, ложится на живот и слушает лежа, стараясь определить направление звуков. Это легче сделать, повернув одно ухо в ту сторону, откуда доносится подозрительный шум. Для улучшения слышимости рекомендуется при этом приложить к ушной раковине согнутые ладони, котелок, отрезок трубы.

Для лучшего прослушивания звуков военнослужащий может приложить ухо к положенной на землю сухой доске, которая выполняет роль собирателя звука, или к сухому бревну, вкопанному в землю.

При необходимости можно изготовить самодельный водяной стетоскоп. Для этого используется стеклянная бутылка (либо металлическая фляга), заполненная водой до горловины, которую зарывают в грунт до уровня воды в ней. В пробку плотно вставляют трубку (пластмассовую), на которую одевают резиновую трубку. Другой конец резиновой трубки, снабженный наконечником, вставляют в ухо. Для проверки чувствительности прибора ударить пальцем землю на расстоянии 4 м от него (звук от удара ясно слышен через резиновую трубку).

При обучении распознаванию звуков необходимо воспроизводить с учебной целью следующее:

· Отрывку траншей.

· Сбрасывание мешков с песком.

· Ходьбу по дощатому настилу.

· Забивание металлического штыря.

· Звук при работе затвором автомата (при открывании и закрывании его).

· Постановку часового на пост.

· Часовой зажигает спичку и закуривает сигарету.

· Нормальный разговор и шепот.

· Сморканье и кашель.

· Треск ломающихся веток и кустарника.

· Трение ствола оружия о стальную каску.

· Хождение по металлической поверхности.

· Перерезание колючей проволоки.

· Перемешивание бетона.

· Стрельбу из пистолета, автомата, пулемета одиночными выстрелами и очередями.

· Шум двигателя танка, БМП, БТР, автомобиля на месте.

· Шум при их движении по грунтовой дороге и по шоссе.

· Лай и повизгивание собак.

· Шум вертолета, летящего на различной высоте.

Заключение

Командиры мотострелковых подразделений должны уметь определять расстояния различными способами: глазомерно, при помощи дальномерной шкалы прицелов и приборов наблюдения и по измеренной угловой величине предметов на местности, по спидометру машины, промером шагами, по средней скорости движения.

В основе любого способа определения расстояний лежит умение выбирать на местности ориентиры и использовать их как метки, указывающие нужные направления, пункты и рубежи.

Выбор и определение ориентиров важное мероприятие в работе командира при работе на местности.

Список литературы

1. Баранов А.Р., Маслак Ю.Г., Ягодинцев В.И. Военная топография в служебно-боевой деятельности оперативных подразделений - М.: Академический Проект, 2005.

2. Военная топография. // Под общ. ред. В. Н. Филатова: учебник для высших военно-учебных заведений. - Воениздат, 2008.

Военная топография.// Под редакцией А. В. Маркеленко. - М.: Издательство "Феникс", 2008.

Измерение и ориентирование на местности без карты. Движение по азимутам. Лекция. Уральский Государственный университет им. А. М. ГОРЬКОГО. - Екатеринбург, 2003.

Пресняков П.Р., Андриясов А.Т. Военная топография.- М.: Издательство Феникс, 2008.

Приложение

Линейные размеры некоторых предметов

Наименование предметов

Рост среднего человека (в обуви)

Стрелок с колена

Телеграфный столб

Обычный смешанный лес

Железнодорожная будка

Одноэтажный дом с крышей

Всадник верхом

БТР и БМП

Один этаж жилого капитального дома

Один этаж промышленного строения

Расстояние между столбами линии связи

Расстояние между опорами электросети высокого напряжения

Заводская труба

Вагон пассажирский цельнометаллический

Вагоны товарные двухосные

Вагоны товарные многоосные

Железнодорожные цистерны двухосные

Железнодорожные цистерны четырехосные

Железнодорожные платформы двухосные

Железнодорожные платформы четырехосные

Автомобили грузовые двухосные

Автомобили легковые

Тяжелый крупнокалиберный пулемет

Станковый пулемет

Мотоциклист на мотоцикле с коляской