Защита объектов от воздействия статического атмосферного электричества. Охрана труда

Молниезащита - эффективное средство защиты и повышения устойчивости функционирования объектов при воздействии на них атмосферного статического электричества. Она включает комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружений, оборудования и материалов от взрывов, загораний и разрушений, возможных при воздействии молний.

Для всех зданий и сооружений, не связанных с производством и хранением взрывчатых веществ, а также для линий электропередач и контактных сетей, проектирование и изготовление молниезащиты должно выполняться согласно РД 34.21.122-87.

По степени защиты здания и сооружения подразделяются на три категории: здания и сооружения, отнесённые к I и II категории молниезащиты, должны быть защищены от прямых ударов молнии, вторичных проявлений молнии и заноса высокого потенциала через наземные, надземные и подземные металлические коммуникации; здания и сооружения, отнесённые к III категории молниезащиты, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные и подземные металлические коммуникации.

Для создания зон защиты применяют одиночный стержневой молниеотвод, двойной стержневой молниеотвод, многократный стержневой молниеотвод, одиночный или двойной тросовый молниеотвод.

Сила землетрясений от 1 до 4 баллов не вызывает повреждение зданий и сооружений, а также остаточных явлений в грунтах и изменения режима грунтовых и наземных вод. Землетрясение силой в 1 балл вызывает незаметное сотрясение почвы, колебание которой регистрируются только приборами. Землетрясения силой 2 балла отмечаются некоторыми, очень чуткими лицами, находящимися в полном покое. При землетрясение 3 балла внимательными наблюдателями замечается очень легкое покачивание висячих предметов. При землетрясении 4 балла наблюдается легкое раскачивание висячих предметов и неподвижных автомашин; слабый звон плотно поставленной неустойчивой посуды. Землетрясение в 4 балла распознаётся большинством людей, находящихся внутри здания. Землетрясение силой 5 баллов вызывает лёгкий скрип полов и перегородок; дребезжание стёкол, осыпание побелки, Движение незакрытых дверей и окон, на поверхности непроточных водоёмов образуются небольшие волны. Заметно качаются висячие предметы, наблюдается выплёскивание воды из наполненных сосудов, возможна остановка маятников часов. Землетрясение силой 6 баллов лёгкие повреждения многих зданий, в одноэтажных кирпичных, каменных и саманных домах наблюдаются значительные повреждения. В сырых грунтах образуются трещины шириной до 1 см, отмечается небольшое изменение дебита источников и уровня воды в колодцах. В помещениях качаются висячие предметы, иногда падают книги, посуда, лёгкая мебель сдвигается, передвижение людей неустойчиво. Землетрясение силой 7 баллов вызывает значительные повреждения зданий, в некоторых случаях их разрушения. На дорогах появляются трещины, наблюдаются нарушение стыков трубопроводов, повреждение каменных оград. В сухих грунтах образуются тонкие трещины, возможны оползни и обвалы. Изменяется дебит источников и уровней грунтовых вод. Возникают новые и пропадают старые источники воды. В помещениях сильно качаются висячие предметы, легкая мебель сдвигается, падают книги, посуда и вазы. Передвижение людей без дополнительной опоры затруднено. Все люди покидают помещение. Землетрясение силой 8 баллов вызывают значительные повреждения большинства зданий. В некоторых полные разрушения. Образуется большое количество трещин на склонах гор и в сырых грунтах; наблюдаются осыпи, оползни и горные обвалы. Вода в водоемах мутная; меняется дебит источников и уровней воды в колодцах. В помещениях сдвигается и частично опрокидывается мебель, лёгкие предметы подскакивают и опрокидываются. Люди с трудом удерживаются на ногах. Все выбегают из помещений. Землетрясение силой 9 баллов вызывают искривления железнодорожных путей, повреждение насыпей дорог, разрушение дымовых труб, башен. Большинство зданий обрушиваются. В грунтах образуются трещины до 10 см; наблюдаются горные обвалы, оползни, небольшие грязевые извержения, в водоёмах большое волнение. В помещениях опрокидывается и ломается мебель. Наблюдается большое беспокойство животных. Землетрясение силой 10 баллов вызывают обрушение многих зданий, дамбы и насыпи получают значительные повреждения, на дорожном полотне трещины и деформации, обрушение труб, башен, памятников, оград. Возникают трещины в грунтах до 1 м. Наблюдается обвал скал и морских берегов. Наблюдается возникновение новых озёр, прибоя и выплёскивания воды в водоёмах и реках. В помещениях многочисленные повреждения предметов домашнего обихода. Животные мечутся и воют. Землетрясение силой 11 баллов вызывают общее разрушение зданий, разрушение насыпей на больших протяжениях. Трубопроводы проходят в полную негодность. На больших протяжениях железнодорожные пути приходят в полную непригодность. На поверхности земли наблюдаются многочисленные трещины и вертикальные перемещения пластов. Большие обвалы, оползни. Сильно меняется режим водоисточников и водоёмов и уровень грунтовых вод. В помещениях наблюдается гибель значительной части населения, животных и имущества под обломками зданий. Землетрясение силой 12 баллов вызывает общее разрушение зданий и сооружений. Значительная часть населения гибнет от оползней. В грунте наблюдаются вертикальные и горизонтальные разрывы и сдвиги. Образуются озёра, водопады, изменяются русла рек. Растительность и животные погибают от обвалов и осыпей в горных районах.

При обработке диэлектрических материалов (в нефтеперерабатывающей, текстильной, бумажной промышленности) возникает электризация тел статическое электричество. Это явление может служить причиной возгорания огнеопасных веществ, электризации человека с последующим разрядом на землю.

Разряд через тело человека может вызвать болевое и нервное нарушение и быть источником непроизвольного резкого движения, в результате которого возможны ушибы, падения и др.

При статической электризации на изолированных от земли металлических частях оборудования возникает относительно земли напряжение порядка десятков киловольт. Так, например, при движении резиновой ленты транспортера в устройствах ременной передачи на ленте (ремне) и на роликах транспортера (шкиве) из-за некоторой пробуксовки возникают электростатические заряды противоположных знаков, а разность их потенциалов достигает 45 кВ.

При разбрызгивании красок из пульверизатора разность потенциалов достигает 10 кВ; при протекании бензина (бензола) по трубам 3 кВ; при выпуске двуокиси углерода на баллоне 8 кВ, на резиновом шланге 10 кВ. Применяемое в электроустановках минеральное масло в процессе переливания также подвергается электризации. Искра, образующаяся при разности потенциалов 1 кВ, может воспламенить бензин, при разности потенциалов 3 кВ горючие газы, при разности потенциалов 5 кВ большую часть горючих шлей.

Электрические заряды, образующиеся на частях производственного оборудования, могут взаимно нейтрализоваться вследствие некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. При относительной влажности 85% и более разряды статического электричества практически не возникают.

Основными способами подавления статической электризации являются: заземление металлических частей производственного оборудования; предотвращение накопления значительных электрических зарядов путем установки в зоне электризации специальных нейтрализаторов; увеличение поверхностей и объемной электрической проводимости.

Заземляющие устройства для защиты от статического электричества, как правило, соединяются с защитными заземляющими устройствами электроустановок. Величина заземляющего контура для защиты от статического электричества должна находиться в пределах 100 Ом. Передвижные элементы (например, автоцистерна) во время налива горючих жидкостей заземляют переносным заземлением в виде гибкого многопроволочного провода.

Отвод статического электричества с тела человека осуществляется путем устройства электропроводящих полов в производственном помещении, рабочих площадок и других приспособлений, а также обеспечения работающих токопроводящей обувью и антистатическими халатами.

Опасность атмосферного электричества.

При грозовом разряде в течение короткого времени при токе молнии 100200 кА в канале молнии развивается температура до 30 000 °С. Вследствие быстрого расширения нагретого воздуха возникает взрывная волна (гром). Ток молнии производит тепловое, электромагнитное, а также механическое воздействие на те объекты, по которым он проходит. Молния может вызывать электростатическую и электромагнитную индукцию. Электростатическая индукция проявляется тем, что на изолированные металлические предметы наводятся опасные электрические потенциалы, вследствие чего возможно искрение между отдельными металлическими элементами конструкций и оборудования. Электромагнитная индукция обусловлена быстрыми изменениями значения тока молнии в металлических незамкнутых контурах, в результате чего в них наводится электродвижущая сила, что приводит к опасности искрообразования в местах сближения этих контуров.

При грозе во время попадания молнии в различные промышленные, транспортные и другие объекты, находящиеся вдали от производственных зданий и сооружений, возможно проникновение (занос) электрических потенциалов в здание по внешним металлическим сооружениям и коммуникациям эстакадам, монорельсам и канатам подвесных дорог, трубопроводам, оболочкам кабелей.

Для приема электрического разряда молнии и отвода ее тока в землю применяют устройства, называемые молниеотводами. Молниеотвод состоит из несущей части (опоры, которой может служить само здание или сооружение), молниеприемника и заземлителя. Наиболее распространены стержневые и тросовые молниеотводы.

Защитное действие молниеотводов основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения и характеризуется зоной защиты, под кото-рой понимается пространство, внутри которого здание защищено с некоторой вероятностью от попадания молнии. Вероятность поражения в расчетах принимается не более 1%, т. е. коэффициент надежности защиты должен составлять не менее 99%. Объект считается защищенным, если все его части находятся в пределах зоны защиты. Зону защиты определяют по эмпирическим формулам, графическим построениям, по таблицам и монограммам, приведенным в специальной литературе по проектированию it устройству молниезащиты.

Статическое электричество или электризация – это комплекс физических и химических процессов, приводящих к разделению в пространстве зарядов противоположных знаков или к накоплению зарядов одного знака. Суть электризации заключается в том, что нейтральные тела, не проявляющие в нормальном состоянии электрических свойств, в условиях контакта (трения, измельчения и т.д.) становятся электрозаряженными.

Заряды могут возникнуть при измельчении, пе­ресыпании и пневмотранспортировке твердых материалов, при переливании, перекачивании по трубопроводам, перевозке в цистернах диэлек­трических жидкостей (бензина, керосина), при об­работке диэлектрических материалов (эбонита, оргстекла), при сматывании тканей, бумаги, пленки (например, полиэтиленовой). При пробуксовывании резиновой ленты транспортера относительно роликов или ремня ременной передачи относи­тельно шкива могут возникнуть электрические за­ряды с потенциалом до 45 кВ.

Опасность возникновения статического электричества проявляется в возможности образования эл. искры и вредном действии его на организм человека. Анализ причин пожаров на производствах показал, что почти 60% всех взрывов происходят по причине возникновения этого явления.

При прикосновении человека к предмету, несу­щему электрический заряд, происходит разряд по­следнего через тело человека. Величины возникаю­щих при разрядке токов небольшие и они очень кратковременны. Поэтому электротравм не возни­кает. Однако разряд, как правило, вызывает рефлек­торное движение человека, что в ряде случаев может привести к резкому движению, падению человека с высоты.

Кроме того, при образовании зарядов с большим электрическим потенциалом вокруг них создается электрическое поле повышенной напряженности, кото­рое вредно для человека. При длительном пребывании человека в таком поле наблюдаются функциональные изменения в центральной нервной, сердечно-сосудистой и других системах.

Основные способы защиты: заземление оборудования, увлажнение воздуха, ионизация воздушной среды нейтрализаторами статического электричества, подбор контактных пар, увеличение поверхности проводимости диэлектриков, изменение режима технологического процесса, применение СИЗ.



Влажный воздух имеет достаточную электропро­водность, чтобы образующиеся электрические заря­ды стекали через него. Поэтому во влажной воздуш­ной среде электростатических зарядов практически не образуется, и увлажнение воздуха является од­ним из наиболее простых и распространенных ме­тодов борьбы со статическим электричеством.

Еще один распространенный метод устранения электростатических зарядов - ионизация воздуха. Образующиеся при работе ионизатора ионы нейтра­лизуют заряды статического электричества. Таким образом, бытовые ионизаторы воздуха не только улучшают аэроионный состав воздушной среды в по­мещении, но и устраняют электростатические заря­ды, образующиеся в сухой воздушной среде на ков­рах, ковровых синтетических покрытиях, одежде. На производстве используют специальные мощные ио­низаторы воздуха различных конструкций, но наибо­лее распространены электрические ионизаторы.

В качестве индивидуальных средств защиты могут применяться антистатическая обувь, антистатические халаты, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Грозовые облака, являющиеся носителями статического электричества, образуются в результате движения воздушных потоков, насыщенных водяными парами. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и землей. При достижении определенной разности потенциалов происходит разряд молнии между облаками или на земле. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.

Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

В организме пострадавших от разрядов молнии отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыха-ние и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжёлых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 - 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях, поскольку более тяжелые симптомы могут проявиться впоследствии, и пострадавшему потребуется квалифицированная помощь медиков.

Если ближайшая больница далеко, то до приезда «скорой помощи» следует попытаться оказать первую помощь самим. Прежде всего, пострадавшего необходимо перенести в безопасное место. Не следует бояться дотрагиваться до пораженного молнией – электрического заряда на теле не остается.

Если пострадавший потерял сознание, нужно уложить его на спину и повернуть голову в сторону, чтобы язык не запал в дыхательные пути, и затем сделать ему искусственное дыхание, а при отсутствии сердцебиения - непрямой массаж сердца. По возможности дать пострадавшему понюхать нашатырный спирт. Ожоги от удара током необходимо обильно полить водой, предварительно сняв обожженную одежду.

Разряды атмосферного электричества (молнии) могут явиться причиной взрывов, пожаров, поражения людей. Разрушительное действие удара молнии очень велико, так как сила тока молнии достигает до 200 кА, напряжение до 150 MB.
Помимо прямого удара, опасность представляет вторичное проявление молнии в виде электростатической и электромагнитной индукций, а также заноса в производственное помещение высоких потенциалов по проводам через наземные или подземные металлические коммуникации. При этом в местах разрыва электроцепи может возникнуть искрение, достаточное для воспламенения горючей среды.
Способ защиты от молний выбирают в зависимости от назначения здания или сооружения, интенсивности грозовой деятельности в данном районе, ожидаемого количества поражений молний в год.
Одним из основных мероприятий защиты от воздействия молнии является устройство молниеотводов. Молниеотвод создает определенную зону защиты, в пределах которой обеспечивается безопасность зданий и сооружений от прямых ударов молнии.

По конструкции молниеотводы разделяют на сгерж-нсные, тросовые и сетчатые. Молниеотвод состоит из несущей части (опоры), молниеприемника, токоотвода и заземлителя.
Каждый молниеотвод имеет определенную зону действия, т. е. часть пространства, внутри которого с достаточной степенью надежности обеспечивается защита здания или сооружения от прямых ударов молнии. Внутри этой зоны выделяют зону А со степенью надежности"99,5 % и выше и зону Б со степенью надежности 95 % и выше.
Для зоны Б высоту одиночного стержневого молниеотвода при известных величинах hх и гх определяют: h=(rx + 1,63 hх)/1,5.
Защита от электростатической индукции осуществляется присоединением всех металлических корпусов оборудования и конструкций к специальному заземлителю, обеспечивающему сопротивление растекаемому току не менее 10 Ом.
Для защиты от электромагнитной индукции трубопроводы и другие протяженные металлические предметы в местах их взаимного сближения на 10 см и менее соединяют привариваемыми металлическими перемычками через каждые 20 м длины, чтобы не допустить образования незамкнутых контуров.
Для защиты от заноса высоких потенциалов перед вводом в сооружение подземные металлические коммуникации присоединяют к заземлителям защиты от электростатической индукции или защитному заземлению электрооборудования, а внешние наземные металлические конструкции и коммуникации — к заземлителю защиты от электростатической индукции. Кроме того, на ближайших двух опорах от здания наземные коммуникации присоединяют к заземлителям с импульсным сопротивлением не более 10 Ом.

ФИЗИЧЕСКАЯ ПРИРОДА И ОПАСНЫЕ ФАКТОРЫ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Атмосферное электричество образуется и концентрируется в облаках - образованиях из мелких водяных частиц, находящихся в жидком и твердом состоянии.

Площадь океанов и морей составляет 71 % поверхности земного шара. Каждый 1 см 2 поверхности Земли в течение года в среднем получает 460 кДж солнечной энергии. Подсчитано, что из этого количества 93 кДж/(см*год) расходуется на испарение воды с поверхности водных бассейнов. Поднимаясь вверх, водяные пары охлаждаются и конденсируются в мельчайшую водяную пыль, что сопровождается выделением теплоты парообразования (2260 кДж/л). Образовавшийся избыток внутренней энергии частично расходуется на эмиссию частиц с поверхности мельчайших водяных капелек. Для от

деления от молекулы воды протона (Н) требуется 5,1 эВ, для отделения электрона -12,6 эВ, а для отделения молекулы от кристалла льда достаточно 0,6 эВ, поэтому основными эмитируемыми частицами являются молекулы воды и протоны. Количество эмитируемых протонов пропорционально массе частиц. Результирующий поток протонов всегда направлен от более крупных капелек к мелким. Соответственно более крупные капельки приобретают отрицательный заряд, а мелкие - положительный. Чистая вода - хороший диэлектрик и заряды на поверхности капелек сохраняются длительное время. Более крупные тяжелые отрицательно заряженные капельки образуют нижний отрицательно заряженный слой облака. Мелкие легкие капельки объединяются в верхний положительно заряженный слой облака. Электростатическое притяжение разноименно заряженных слоев поддерживает сохранность облака как целого.

Эмиссия протонов возникает дополнительно при кристаллизации водяных частиц (превращении их в снежинки, градинки), так как при этом выделяется теплота плавления, равная 335 кДж/л. При соударениях капелек, снежинок, градинок работа ветра в конечном счете приводит к эмиссии протонов, к изменению величины заряда частиц. Следовательно, атмосферное электричество (АтЭ) и статическое электричество (СтЭ) имеют одинаковую физическую природу. Различаются они масштабом образования зарядов и знаком эмитируемых частиц (электроны или протоны).

О единстве природы АтЭ и СтЭ свидетельствуют опытные данные. Сухой снег представляет собой типичное сыпучее тело; при трении снежинок друг о друга и их ударах о землю и о местные предметы снег должен электризоваться, что и происходит в действительности. Наблюдения на Крайнем Севере и в Сибири показывают, что при низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, в облаках снежной пыли бывают виднысиние и фиолетовые вспышки, наблюдается свечение остроконечных предметов, образуются шаровые молнии. Очень;ильные метели иногда заряжают телеграфные провода так сильно, что подк:лючаемые к ним электролампочки светятся полным накалом. Те же явления наблюдаются во время сильных пыльных (песчанных) бурь.

Наличие множества взаимодействующих факторов дает сложную картину распределения зарядов АтЭ в облаках и их частях. По экспериментальным данным нижняя часть облаков чаще всего имеет отрицательный заряд, а верхняя - положительный, но может иметь место и противоположная полярность частей облака. Облака могут также нести преимущественно заряд одного знака.

Заряд облака (части облака) образуют мельчайшие одноименно заряженные частицы воды (в жидком и твердом состоянии), размещенные в объеме нескольких км 3 .

Электрический потенциал грозового облака составляет десятки миллионов вольт, но может достигать 1 млрд. В. Однако общий заряд облака равен нескольким кулонам.

Основной формой релаксации зарядов АтЭ является молния- электрический разряд между облаком и землей или между облаками (частями облаков). Диаметр канала молнии равен примерно 1 см, ток в канале молнии составляет десятки килоампер, но может достигать 100 кА, температура в канале молнии равна примерно 25 000°С, продолжительность разряда составляет доли секунды.

Молния является мощным поражающим опасным фактором. Прямой удар молнии приводит к механическим разрушениям зданий, сооружений, скал, деревьев, вызывает пожары и взрывы, является прямой или косвенной причиной гибели людей. Механические разрушения вызываются мгновенным превращением воды и вещества в пар высокого давления на путях протекания тока молнии в названных объектах. Прямой удар молнии называют первичным воздействием атмосферного электричества.

К вторичному воздействию АтЭ относят: электростатическую и электромагнитную индукции; занос высоких потенциалов в здания и сооружения.

Рассмотрим опасные факторы вторичного воздействия АтЭ. Образовавшийся электростатический заряд облака наводит (индукцирует) заряд противоположного знака на предметах, изолированных от земли (оборудование внутри и вне зданий, металлические крыши зданий, провода ЛЭП, радиосети и т. п.). Эти заряды сохраняются и после удара молнии. Они релаксируют обычно путем электрического разряда на ближайшие заземленные предметы, что может вызвать электротравматизм людей, воспламенение горючих смесей и взрывы. В этом заключается опасность электростатической индукции.

Явление электромагнитной индукции заключается в следующем. В канале молнии протекает очень мощный и быстро изменяющийся во времени ток. Он создает мощное переменное во времени магнитное поле. Такое поле индуцирует в металлических контурах электродвижущую силу разной величины. В местах сближения контуров между ними могут происходить электрические разряды, способные воспламенить горючие смеси и вызвать электротравматизм.

Занос высоких потенциалов в здание происходит в результате прямого удара молнии в металлокоммуникации, расположенные на уровне земли или над ней вне зданий, но входящие внутрь зданий. Здесь под металлокоммуникациями понимают рельсовые пути, водопроводы, газопроводы, провода ЛЭП и т. п. Занесение высоких потенциалов внутрь здания сопровождается электрическими разрядами на заземленное оборудование, что может привести к воспламенению горючих смесей и электротравматизму людей.

ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305- 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б - не менее 95 %.

По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

при N<=1 достаточна зона защиты типа Б; при N> 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях - типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305-77.

Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории - от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Для защиты объектов от прямых ударов молнии сооружаются молниеот-воды, принимающие на себя ток молнии и отводящие его в землю.

Объекты I категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотводами или молниеотводами, устанавливаемыми на защищаемомобъекте, но электрически изолированными от него.