Большим кругом называется сечение. Сечение поверхности шара

Сечение поверхности шара

Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы будем получать эллипс. В том случае, если секущая плоскость перпендикулярна плоскости проекций, на этой плоскости проекцией окружности является отрезок прямой, который равен диаметру этой окружности.

На рисунке 109 показано пересечение поверхности шара горизонтально-проектирующей плоскостью Р . На горизонтальную плоскость сечение будет проецироваться в виде отрезка проекции р плоскости Р , который заключён между контуром шара и равен диаметру окружности сечения. На фронтальной плоскости мы получим эллипс. О 1 является центром окружности, который получен в сечении шара. Он расположен на одной высоте с центром шара О . Горизонтальная проекция о 1 центра О 1 окружности располагается посредине отрезка ab . Перпендикуляр, который опущен из точки о на прямую ab , попадает в точку о 1 , являющуюся горизонтальной проекцией центра окружности сечения. Фронтальная проекция о́ 1 центра окружности является центром интересующего нас эллипса.

Если рассматривать эллипс как проекцию некоторой окружности, то его большая ось всегда будет проекцией того диаметра окружности, который параллелен плоскости проекций, а малая ось эллипса будет представлять собой проекцию диаметра, перпендикулярного ему. Вследствие этого большая ось эллипса проекции всегда равна диаметру проецируемой окружности. Здесь диаметр окружности CD перпендикулярен плоскости Н и проецируется без искажения на фронтальную плоскость. Для нахождения концов большой оси эллипса необходимо отложить вниз и вверх от центра о 1 эллипса (по перпендикуляру к прямой о́о́ 1) отрезки о́ 1 с́ и о́ 1 , которые равны половине диаметра окружности сечения о́ 1 с́ = о́ 1 = 1/2(ab ). При этом диаметр АВ окружности параллелен горизонтальной плоскости, а его фронтальная проекция а́b́ представляет собой малую ось рассматриваемого эллипса.

Точки, отделяющие видимую часть эллипса от невидимой. Начнем с проведения фронтальной плоскости Q , которая делит шар пополам. Плоскость Q будет пересекать поверхность шара по окружности, проецирующейся на фронтальную плоскость в виде контура. Тогда часть линии сечения, расположенную на передней части шара, будет видно, если смотреть на шар спереди, а остальная её часть не будет видна. Плоскость Q пересечет плоскость Р по фронтали Ф 1 . Пересекаясь с контуром, ее фронтальная проекция Ф определит точки 1 , которые отделяют видимую часть кривой от невидимой. Промежуточные точки 2́ эллипса можно найти с помощью вспомогательной фронтальной плоскости R, пересекающей поверхность шара по окружности радиуса r 2 , а плоскость Р – по фронтали Ф 2 .

Или сферой . Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом . Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром . Концы любого диаметра называются диаметрально противоположными точками шара. Всякое сечение шара плоскостью есть круг . Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью . Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии . Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенному в эту точку, называется касательной плоскостью . Данная точка называется точкой касания . Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной . Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара. Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар. Шаровой сектор получается из шарового сегмента и конуса. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется. Основные формулы Шар (R = ОВ - радиус): S б = 4πR 2 ; V = 4πR 3 / 3. Шаровой сегмент (R = ОВ - радиус шара, h = СК - высота сегмента, r = КВ - радиус основания сегмента): V сегм = πh 2 (R - h / 3) или V сегм = πh(h 2 + 3r 2) / 6 ; S сегм = 2πRh . Шаровой сектор (R = ОВ - радиус шара, h = СК - высота сегмента): V = V сегм ± V кон, «+» - если сегмент меньше,«-» - если сегмент больше полусферы. или V = V сегм + V кон = πh 2 (R - h / 3) + πr 2 (R - h) / 3 . Шаровой слой (R 1 и R 2 - радиусы оснований шарового слоя; h = СК - высота шарового слоя или расстояние между основаниями): V ш/сл = πh 3 / 6 + πh(R 1 2 + R 2 2 ) / 2 ; S ш/сл = 2πRh . Пример 1. Объем шара равен 288π см 3 . Найти диаметр шара. Решение V = πd 3 / 6 288π = πd 3 / 6 πd 3 = 1728π d 3 = 1728 d = 12 см. Ответ: 12. Пример 2. Три равных сферы радиусом r касаются друг друга и некоторой плоскости. Определить радиус четвертой сферы, касающейся трех данных и данной плоскости. Решение Пусть О 1 , О 2 , О 3 - центры данных сфер и О - центр четвертой сферы, касающейся трех данных и данной плоскости. Пусть А, В, С, Т - точки касания сфер с данной плоскостью. Точки касания двух сфер лежат на линии центров этих сфер, поэтому О 1 О 2 = О 2 О 3 = О 3 О 1 = 2r . Точки равноудалены от плоскости АВС , поэтому АВО 2 О 1 , АВО 2 О 3 , АВО 3 О 1 - равные прямоугольники, следовательно, ∆АВС - равносторонний со стороной 2r . Пусть х - искомый радиус четвертой сферы. Тогда ОТ = х . Следовательно, Аналогично Значит, Т - центр равностороннего треугольника. Поэтому Отсюда Ответ: r / 3 . Сфера, вписанная в пирамиду В каждую правильную пирамиду можно вписать сферу. Центр сферы лежит на высоте пирамиды в точке ее пересечения с биссектрисой линейного угла при ребре основания пирамиды. Замечание. Если в пирамиду, необязательно правильную, можно вписать сферу, то радиус r этой сферы можно вычислить по формуле r = 3V / S пп , где V - объем пирамиды, S пп - площадь ее полной поверхности. Пример 3. Коническая воронка, радиус основания которой R , а высота H , наполнена водой. В воронку опущен тяжелый шар. Каким должен быть радиус шара, чтобы объем воды, вытесненный из воронки погруженной частью шара, был максимальным? Решение Проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник. Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности. Радиус вписанной в треугольник окружности равен: r = S / p , где S - площадь треугольника, p - его полупериметр. Площадь равнобедренного треугольника равна половине высоты (H = SO ), умноженной на основание. Но поскольку основание - удвоенный радиус конуса, то S = RH . Полупериметр равен p = 1/2 (2R + 2m) = R + m . m - длина каждой из равных сторон равнобедренного треугольника; R - радиус окружности, составляющей основание конуса. Найдем m по теореме Пифагора: , откуда Кратко это выглядит следующим образом: Ответ: Пример 4. В правильной треугольной пирамиде с двугранным углом при основании, равным α , расположены два шара. Первый шар касается всех граней пирамиды, а второй шар касается всех боковых граней пирамиды и первого шара. Найти отношение радиуса первого шара к радиусу второго шара, если tgα = 24/7 . Решение
Пусть РАВС - правильная пирамида и точка Н - центр ее основания АВС . Пусть М - середина ребра ВС . Тогда - линейный угол двугранного угла , который по условию равен α , причем α < 90° . Центр первого шара, касающегося всех граней пирамиды, лежит на отрезке РН в точке его пересечения с биссектрисой . Пусть НН 1 - диаметр первого шара и плоскость, проходящая через точку Н 1 перпендикулярно прямой РН , пересекает боковые ребра РА, РВ, РС соответственно в точках А 1 , В 1 , С 1 . Тогда Н 1 будет центром правильного ∆А 1 В 1 С 1 , а пирамида РА 1 В 1 С 1 будет подобна пирамиде РАВС с коэффициентом подобия k = РН 1 / РН . Заметим, что второй шар, с центром в точке О 1 , является вписанным в пирамиду РА 1 В 1 С 1 и поэтому отношение радиусов вписанных шаров равно коэффициенту подобия: ОН / ОН 1 = РН / РН 1 . Из равенства tgα = 24/7 находим: Пусть АВ = х . Тогда Отсюда искомое отношение ОН / О 1 Н 1 = 16/9. Ответ: 16/9. Сфера, вписанная в призму Диаметр D сферы, вписанной в призму, равен высоте Н призмы: D = 2R = H . Радиус R сферы, вписанной в призму, равен радиусу окружности, вписанной в перпендикулярное сечение призмы. Если в прямую призму вписана сфера, то в основание этой призмы можно вписать окружность. Радиус R сферы, вписанной в прямую призму, равен радиусу окружности, вписанной в основание призмы. Теорема 1 Пусть в основание прямой призмы можно вписать окружность, и высота Н призмы равна диаметру D этой окружности. Тогда в эту призму можно вписать сферу диаметром D . Центр этой вписанной сферы совпадает с серединой отрезка, соединяющего центры окружностей, вписанных в основания призмы. Доказательство Пусть АВС…А 1 В 1 С 1 … - прямая призма и О - центр окружности, вписанной в ее основание АВС . Тогда точка О равноудалена от всех сторон основания АВС . Пусть О 1 - ортогональная проекция точки О на основание А 1 В 1 С 1 . Тогда О 1 равноудалена от всех сторон основания А 1 В 1 С 1 , и ОО 1 || АА 1 . Отсюда следует, что прямая ОО 1 параллельна каждой плоскости боковой грани призмы, а длина отрезка ОО 1 равна высоте призмы и, по условию, диаметру окружности, вписанной в основание призмы. Значит, точки отрезка ОО 1 равноудалены от боковых граней призмы, а середина F отрезка ОО 1 , равноудаленная от плоскостей оснований призмы, будет равноудалена от всех граней призмы. То есть F - центр сферы, вписанной в призму, и диаметр этой сферы равен диаметру окружности, вписанной в основание призмы. Теорема доказана. Теорема 2 Пусть в перпендикулярное сечение наклонной призмы можно вписать окружность, и высота призмы равна диаметру этой окружности. Тогда в эту наклонную призму можно вписать сферу. Центр этой сферы делит высоту, проходящую через центр окружности, вписанной в перпендикулярное сечение, пополам. Доказательство
Пусть АВС…А 1 В 1 С 1 … - наклонная призма и F - центр окружности радиусом FK , вписанной в ее перпендикулярное сечение. Поскольку перпендикулярное сечение призмы перпендикулярно каждой плоскости ее боковой грани, то радиусы окружности, вписанной в перпендикулярное сечение, проведенные к сторонам этого сечения, являются перпендикулярами к боковым граням призмы. Следовательно, точка F равноудалена от всех боковых граней. Проведем через точку F прямую ОО 1 , перпендикулярную плоскости оснований призмы, пересекающую эти основания в точках О и О 1 . Тогда ОО 1 - высота призмы. Поскольку по условию ОО 1 = 2FK , то F - середина отрезка ОО 1 : FK = ОО 1 / 2 = FО = FО 1 , т.е. точка F равноудалена от плоскостей всех без исключения граней призмы. Значит, в данную призму можно вписать сферу, центр которой совпадает с точкой F - центром окружности, вписанной в то перпендикулярное сечение призмы, которое делит высоту призмы, проходящую через точку F , пополам. Теорема доказана. Пример 5. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда. Решение Нарисуйте вид сверху. Или сбоку. Или спереди. Вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом, а параллелепипед будет кубом. Длина, ширина и высота этого куба в два раза больше, чем радиус шара. АВ = 2 , а следовательно, объем куба равен 8. Ответ: 8. Пример 6. В правильной треугольной призме со стороной основания, равной , расположены два шара. Первый шар вписан в призму, а второй шар касается одного основания призмы, двух ее боковых граней и первого шара. Найти радиус второго шара. Решение
Пусть АВСА 1 В 1 С 1 - правильная призма и точки Р и Р 1 - центры ее оснований. Тогда центр шара О , вписанного в эту призму, является серединой отрезка РР 1 . Рассмотрим плоскость РВВ 1 . Поскольку призма правильная, то РВ лежит на отрезке BN , который является биссектрисой и высотой ΔАВС . Следовательно, плоскость и является биссекторной плоскостью двугранного угла при боковом ребре ВВ 1 . Поэтому любая точка этой плоскости равноудалена от боковых граней АА 1 ВВ 1 и СС 1 В 1 В . В частности, перпендикуляр ОК , опущенный из точки О на грань АСС 1 А 1 , лежит в плоскости РВВ 1 и равен отрезку ОР . Заметим, что KNPO - квадрат, сторона которого равна радиусу шара, вписанного в данную призму. Пусть О 1 - центр шара, касающегося вписанного шара с центром О и боковых граней АА 1 ВВ 1 и СС 1 В 1 В призмы. Тогда точка О 1 лежит плоскости РВВ 1 , а ее проекция Р 2 на плоскость АВС лежит на отрезке РВ . По условию сторона основания равна

Наименование параметра Значение
Тема статьи: Сечение сферы
Рубрика (тематическая категория) Образование

Плоскостью частного положения

Сфера пересечена фронтально- прое-цирующей плоскостью (рис.9.19.)

Рис.9.19.
Окружность, по которой плоскость a пересекает сферу, на плоскость Н проецируется в эллипс. На фронтальную плоскость проекций эта окружность проецируется в отрезок 1¢¢2¢¢, лежащей на следе a v . Строим точки 1¢ и 2¢, это горизонтальные проекции самой высокой и самой низкой точками сечения. Большая ось эллипса на горизонтальной плоскости проекций определяется точками 5 и 6, которые получаются при пересечении плоскости Т, проходящей через центр сферы, перпендикулярной плоскости a.

Для построения горизонтальных проекций точек воспользуемся параллелями сферы, проходящими через выбранные точки. Обязательно нужно выбрать точки 3 и 4, лежащие на экваторе, так как являются точками перехода с видимой на невидимую сторону поверхности (рис.9.19.).

РАЗВЕРТКИ

При изучении построения разверток поверхности рассматривают как гибкую нерастяжимую пленку. Некоторые поверхности при изгибании можно совместить с плоскостью без разрывов и склеивания. Такие поверхности называют развертывающимися, а полученную плоскую фигуру - разверткой. Поверхности, которые нельзя совместить с плоскостью, относятся к неразвертываемым.

Построение разверток имеет большое практическое применение, так как позволяет изготавливать разнообразные изделия из листового материала путем его изгибания.

Основные свойства разверток поверхностей

Каждой точке (фигуре) на поверхности соответствует точка (фигура) на развертке и наоборот.

На основании этого можно сформулировать следующие свойства:

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой. Следствие: замкнутая линия на поверхности и соответствующая ей линия на развертке ограничивают одинаковую площадь.

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке.

3. Прямой на поверхности соответствуют прямая на развертке.

4. Параллельным прямым на поверхности соответствуют также параллельные на развертке

Развертка поверхности многогранников

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) Способ треугольников (триангуляции);

2) Способ нормального сечения;

3) Способ раскатки.

Сечение сферы - понятие и виды. Классификация и особенности категории "Сечение сферы" 2017, 2018.

Представляет плоскую кривую - окружность, принадлежащую секущей плоскости.
Построить сечение сферы плоскостью общего положения β

Так как секущая плоскость общего положения, то эта окружность проецируется на плоскости проекций в виде эллипсов. Для построения эллипса необходимо знать размеры эллипса по его осям большой и малой.
Для тел вращения, к каковым относят цилиндр, конус и сферу, линия сечения может быть построена с характерными точками кривой к которым относятся:
- точки в которых меняется знак видимости;
- точки в которых ее координаты принимают максимальные и минимальные значения:
- x max ; x min ;
- y max ; y min ;
- z max ; z min ;
Использование характерных точек позволяет выполнить более точное построение линии пересечения поверхности вращения и плоскости.

Решение задачи на сечение сферы плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость β из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости β и проекцию шара. На следе плоскости β V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след. Линия сечения шара - точки A" 1 , B" 1 совпадает здесь со следом плоскости. Далее на фронтальной плоскости проекций V 1 построим центр окружности сечения - точку C" 1 которую получим восстановив перпендикуляр из центра шара (точка 0" 1 ) к [A" 1 B" 1 ] на их пересечении. Далее включаем обратное проецирование: через точки A" 1 , B" 1 и C" 1 проводим горизонтали h принадлежащие плоскости β , и на плоскости проекций H через центр шара проводим вспомогательную горизонтально-проецирующую плоскость γ 1 . Горизонтальный след плоскости γ 1 пресечет проекцию горизонтали h и определит в этом месте точку C` - центра окружности сечения. Горизонталь h` пересекает проекцию шара в точках D` и E` , определяя тем самым действительную величину отрезка [DE ] - большой оси эллипса. Аналогично строятся точки A` и B` , определяющие величину отрезка [A`B` ] - малой оси эллипса.

Проекции большой и малой оси эллипса на горизонтальную плоскость проекции H найдены, а это означает что эллипс - проекция окружности сечения на H может быть построен, смотри статью: Окружность

Повторим те же действия на для фронтальной плоскости проекций V и построим другой эллипс - проекцию окружности сечения на V .

Для нахождения точек указывающих границы видимости горизонтальной проекции окружности сечения

проводим через центр шара фронтально-проецирующую плоскость γ 2 V β по горизонтали h(h`, h") . Линия h` пересекается с горизонтальной проекцией окружности сечения по точкам 5,6 указывающим границу видимости. Точки окружности сечения расположенные на фронтальной проекции ниже следа плоскости γ 2 , на горизонтальной плоскости проекции H 5`, 6` ] - и будут на ней невидимы.

Для нахождения точек указывающих границы видимости фронтальной проекции окружности сечения. Проводим через центр шара горизонтально-проецирующую плоскость γ 1 H , которая пересечет плоскость β по фронтали f(f`, f") . Линия f" пересекается с фронтальной проекцией окружности сечения по точкам 7", 8" указывающим границу видимости. Точки окружности сечения расположенные на горизонтальной проекции выше следа плоскости γ 1 , на фронтальной плоскости проекции V будут располагаться слева от отрезка [7", 8" ] - и будут на ней невидимы.

На рис. 11 показано построение проекций не­которых точек.

Проекции С" и D " построены на горизонтальной проекции параллели радиуса 0"1", построенной с

помощью про­екции 1 ". Проекция С"" и D "" построены на профильной проекции окружности, проведенной на сфере через проекции C "(D ") так, что плоскость окружности параллельна плоскости проекций.

Проекция Е" является точкой касания эллипса (горизонтальной проекции окружности среза) и экватора сферы. Она построена в про­екционной связи на горизонтальной проекции экватора по фрон­тальной проекции Е".

Горизонтальная проекция М" произвольной точки на линии среза построена с помощью параллели радиуса О"2" , фронтальная проекция которой проходит через проекции М 2 " . Проекция F "является точкой касания эллипса (профильной про­екции окружности среза) и профильной проекции очерка сферы.

Если плоскость, пересекающая сферу, является плоскостью общего положения, то задачу решают способом перемены плоскос­тей проекций. Дополнительную плоскость проекций выбирают так, чтобы обеспечить перпендикулярность ее и секущей плоскости. Это позволяет упростить построение линии пересечения.

12. Построение сечений тора

В примере на рис. 12 показано применение вспомогательных плоскостей γ 1 (γ 1 ") и γ 2 (γ 2 ") , перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью α (α""). Тор на рис.12 имеет два изображения - фронтальную проекцию и половину профильной проекции.

Полуокружность радиуса R 2 (профильная проекция линии пересечения тора вспомогательной

плоскостью γ 2 ) касается проекции плоскости α(следа α""). Тем самым определяются профильная проекция 3"" и по ней фронтальная проекция 3"" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R 1 - профильная проекция линии пересечения тора вспомогательной плоскостью γ 1 . Она пересекает профильную проекцию плоскости α (след α"") в двух точках 5"" и 7"" - профильных проекциях точек линии пересечения. Проводя аналогичные пост­роения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l 1 и l 2 на фронтальной проекции для нанесения точек 5 0 , 7 0 и 3 0 .

Точки 6 0 , 8 0 и 4 0 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается ал­гебраическим уравнением 4-го порядка.

Кривые пересечения тора с плоскостью, параллельной оси, приведены на рис.12 внизу. Они имеют общее название - кривые Персея (Персей - геометр Древней Греции). Это кривые четвертого порядка. Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.