Закон Авогадро: описание и биография учёного. Важнейшее положение в химии

Закон Авогадро, открытый в 1811 г., сыграл большую роль в развитии хими. Прежде всего он способствовал признанию атомно-молекулярного учения, сформулированного впервые в середине XVIII в. М.В. Ломоносовым. Так, например, пользуясь числом Авогадро:

оказалось возможным вычислять не только абсолютные массы атомов и молекул, но и собственно линейные размеры этих частиц. Согласно закону Авогадро:

«В равных объёмах различных газов при постоянном давлении и температуре содержится одинаковое число молекул, равное »

Из закона Авогадро вытекает ряд важных следствий касающихся молярного объёма и плотности газов. Так, из закона Авогадро непосредственно следует, что одинаковое число молекул различных газов будут занимать одинаковый объём, равный 22,4 литра. Такой объём газов получил название молярного объёма . Верно и обратное – молярный объём различных газов одинаков и равен 22,4 л:

Действительно, поскольку 1 моль любого вещества содержит одинаковое число молекул, равное , то очевидно и их объёмы в газообразном состоянии при одинаковых условиях будут одинаковыми. Таким образом, при нормальных условиях (н.у.), т.е. при давлении и температуре молярный объём различных газов будет составлять . Количество вещества , объём и молярный объём газов могут быть связаны между собой в общем случае соотношением вида:


откуда соответственно:

В общем случае различают нормальные условия (н.у.):

к стандартным условиям относят:

Для того чтобы перевести температуру по шкале Цельсия в температуру по шкале Кельвина, используют следующее соотношение:

Массу собственно газа можно вычислить по значению его плотности , т.е.

Поскольку как было показано выше:

тогда очевидно:

откуда соответственно:


Из приведенных нами выше соотношений вида:

после подстановки в выражение:

также следует, что:

откуда соответственно:

и таким образом имеем:

Поскольку при нормальных условиях 1 моль любого занимает объём равный:

тогда соответственно:


Полученное таким образом соотношение достаточно важно для понимания 2-го следствия из закона Авогадро, которое в свою очередь непосредственно связано с таким понятием как относительная плотность газов . В общем случае, относительная плотность газов – величина, показывающая, во сколько раз один газ тяжелее или легче другого, т.е. во сколько раз плотность одного газа больше или меньше плотности другого, т.е. имеем соотношение вида:

Так, для первого газа имеем:

соответственно для второго газа:

тогда очевидно:

и таким образом:

Другими словами, относительная плотность газа есть отношение молекулярной массы исследуемого газа к молекулярной массе газа, с которым производится сравнение. Относительная плотность газа – безразмерная величина. Таким образом, для того чтобы вычислить относительную плотность одного газа по другому, достаточно знать молекулярные относительные молекулярные массы этих газов. Для того чтобы было понятно, с каким газом проводят сравнение, ставят индекс. Например, обозначает, что сравнение проводят с водороду и тогда говорят о плотности газа по водороду, не употребляя уже слово «относительная», принимая это как бы по умолчанию. Аналогично измерения проводят, беря в качестве газа сравнения – воздух. В этом случае указывают, что сравнение исследуемого газа проводят с воздухом . При этом средняя молекулярная масса воздуха принимается равной 29 , а поскольку относительная молекулярная масса и молярная масса численно совпадают, тогда:

Химическая формула исследуемого газа ставится рядом в скобках, например:

и читается как – плотность хлора по водороду. Зная относительную плотность одного газа по отношению к другому, можно вычислить молекулярную, а также молярную массу газа, даже если формула вещества неизвестна. Все приведенные выше соотношения относятся к так называемым нормальным условиям.

Амедео Авогадро был одним из итальянских физиков и химиков в девятнадцатом веке. Надо сказать, что образование он получал юридическое, но тяга к математике и физике подтолкнула его самостоятельно заняться изучением этих наук. И в этом деле он преуспел.

В тридцать лет Авогадро становится преподавателем физики в одном из университетских лицеев того времени. Позже он станет профессором математике в университете. Однако, Авогадро известен вовсе не своей успешной карьерой преподавателя точных наук, коих он освоил самостоятельно, он известен, прежде всего, как учёный, и как человек, высказавший одну из основополагающих гипотез физической химии. Он предположил, что если взять равные объёмы двух разных идеальных газов при одном и том же давлении и температуре, то в этих объёмах будет содержаться одинаковое число молекул. Впоследствии гипотеза подтвердилась, и сегодня может быть доказана при помощи теоретических выкладок. Сегодня это правило носит название закона Авогадро. Кроме того, в честь него было названо некое постоянное число, так называемое число Авогадро, о чём пойдёт речь ниже.

Число Авогадро

Все вещества состоят из каких-то структурных элементов, как правило, это либо молекулы, либо атомы, но важно не это. Что должно происходить, когда мы смешиваем два вещества, и они реагируют? Логично, что один структурный элемент, кирпичик, одного вещества должен прореагировать с одним структурным элементом, кирпичиком, другого вещества. Поэтому при полной реакции число элементов для обоих веществ должно быть одинаковым, хотя при этом могут отличаться и вес, и объёмы препаратов. Таким образом, любая химическая реакция должна содержать одинаковое число структурных элементов каждого вещества, либо эти цифры должны быть пропорциональны какому-то числу. Совершенно неважно значение этого числа, но в дальнейшем за основу решили взять двенадцать грамм углерода-12 и подсчитать в нём количество атомов. Оно составляет порядка шести помноженной на десять в двадцать третьей степени. Если вещество содержит такое количество структурных элементов, то говорят об одном моле вещества. Соответственно все химические реакции в теоретических выкладках записываются в молях, то есть смешивают моли веществ.

Как говорилось выше, значение числа Авогадро, в принципе неважно, однако при этом его определяют физическим способом. Поскольку опыты на данный момент имеют недостаточную точность, то данное число всё время уточняется. Можно, конечно, надеется, что когда-нибудь оно будет подсчитано абсолютно точно, но пока до этого далеко. На сегодняшний день последнее уточнение было сделано в 2011 году. Кроме того, в том же году была принята резолюция о том, как грамотно записывать данное число. Поскольку оно всё время уточняется, то его на сегодняшний день записывают как 6.02214Х помноженное на десять в двадцать третьей степени. Такое количество структурных элементов содержится в одном моле вещества. Буква «Х» в данной записи говорит о том, что число уточняется, то есть значение Х в будущем будет уточняться.

Закон Авогадро

В самом начале данной статьи мы упомянули Закон Авогадро. Это правило говорит об одинаковом количестве молекул. В таком случае имеет смысл связать этот закон с числом Авогадро или молем. Тогда закон Авогадро будет утверждать, что моль каждого идеального газа при одной и той же температуре и давление занимает одинаковый объём. Подсчитано, что при нормальных условиях этот объём составляет порядка двадцати четырёх с половиной литров. Есть точное значение этой цифры, 22.41383 литров. И поскольку процессы, происходящие при нормальных условиях, важны и встречаются очень часто, то есть и название для данного объёма, молярный объём газа.

В теоретических выкладках очень часто, рассматривается молярные объёмы газа. Если есть необходимость перейти к другим температурам или давление, то объём, конечно, изменится, однако есть соответствующие формулы из физики, которые позволяют его подсчитать. Просто надо всегда помнить, что моль газа всегда относится к нормальным условиям, то есть это какая-то конкретная температура и какое-то конкретное давление, и согласно постановлению 1982 года при нормальных условиях давление газа составляет десять в пятой степени Паскаль, а температура 273.15 Кельвина.

Помимо очевидного прикладного значения двух понятий, что были рассмотрены выше, есть и более интересные последствия, которые из них вытекают. Так, зная плотность воды и, взяв один моль её, мы можем оценить размеры молекулы. Здесь мы исходим из того, что нам известна атомарная масса молекул воды и углерода. Таким образом, если мы берём для углерода двенадцать грамм, то масса воды определяется согласно пропорциональной зависимости, она равна восемнадцати граммам. Поскольку плотность воды определить несложно, необходимых данных для оценки размера молекулы воды теперь достаточно. Вычисления показывают, что размер молекулы воды порядка десятых долей нанометра.

Интересно и дальнейшее развитие закона Авогадро. Так, Вант-Гоф распространил законы идеальных газов на растворы. Суть сводится к аналогии законов, но в итоге это дало возможность узнать молекулярные массы веществ, которые по-другому получить было бы очень трудно.

Принцип, который в 1811 году сформулировал итальянский химик Амадео Авогадро (1776-1856), гласит: при одинаковых температурах и давлении в равных объемах газов будет содержаться одинаковое число молекул, независимо от их химической природы и физических свойств. Это число является физической константой, численно равной количеству молекул, атомов, электронов ионов или других частиц, содержащихся в одном моле. Позднее гипотеза Авогадро, подтвержденная большим числом экспериментов, стала считаться для одним из основных законов, вошедшим в науку под названием закон Авогадро, и его следствия все основаны на утверждении, что моль любого газа, в случае одинаковых условий, будет занимать одинаковый объем, называемый молярным.

Сам Амадео Авогадро предполагал, что физическая константа является очень большой величиной, но только множество независимых методов, уже после смерти ученого, позволили экспериментально установить число атомов, содержащееся в 12 г (является атомной единицей массы углерода) или в молярном объеме газа (при Т = 273,15 К и р =101,32 кПа), равном 22,41 л. Константу принято обозначать, как NA или реже L. Она названа в честь ученого — число Авогадро, и равняется оно, примерно, 6,022 . 1023. Это и есть число молекул любого газа, находящегося в объеме 22,41 л, оно одинаково и для легких газов (водорода), и для тяжелых газов Закон Авогадро математически можно выразить: V / n = VM, где:

  • V — объем газа;
  • n — количество вещества, которое является отношением массы вещества к его массе молярной;
  • VM — константа пропорциональности или молярный объем.

Принадлежал к благородному семейству, проживавшему в северной части Италии. Он родился 09.08.1776 в Турине. Его отец — Филиппо Авогадро — был служащим судебного ведомства. Фамилия на венецианском средневековом диалекте означала адвоката или чиновника, который взаимодействовал с людьми. По существовавшей в те времена традиции, должности и профессии передавались по наследству. Поэтому в 20 лет Амадео Авогадро получил степень, став доктором законоведения (церковного). Физику и математику он начал самостоятельно изучать в 25 лет. В своей научной деятельности занимался изучением и исследованиями в области электрохимии. Однако в историю науки Авогадро вошел, сделав к атомистической теории очень важное дополнение: ввел понятие о мельчайшей частице вещества (молекуле), способной существовать самостоятельно. Это было важно для объяснения простых объемных отношений между газами, вступившими в реакцию, а закон Авогадро стал иметь большое значение для развития науки и широко применяться на практике.

Но произошло это не сразу. Некоторыми химиками закон Авогадро был признан через десятилетия. Оппонентами итальянского профессора физики били такие знаменитые и признанные научные авторитеты, как Берцелиус, Дальтон, Дэви. Их заблуждения привели к многолетним спорам о химической формуле молекулы воды, так как существовало мнение, что ее следует записывать не H2O, а HO или H2O2. И только закон Авогадро помог установить состав и других простых и сложных веществ. Амадео Авогадро утверждал, что молекулы простых элементов состоят из двух атомов: O2, H2, Cl2, N2. Из чего следовало, что реакцию между водородом и хлором, в результате которой будет образован хлороводород, можно записать в виде: Cl2 + H2 → 2HCl. При взаимодействии одной молекулы Cl2 с одной молекулой H2, образуются две молекулы HCl. Объем, который будет занимать HCl, должен быть в два раза больше объема каждого, из вступивших в эту реакцию, компонентов, то есть должен равняться их суммарному объему. Только начиная с 1860 года, начал активно применяться закон Авогадро, и следствия из него позволили установить истинные значения атомных масс некоторых химических элементов.

Одним из основных выводов, сделанных на его основании, стало уравнение, описывающее состояние идеального газа: p .VM = R . T, где:

  • VM — молярный объем;
  • p — давление газа;
  • T — абсолютная температура, К;
  • R — универсальная газовая постоянная.

Объединенный также является следствием закона Авогадро. При постоянной массе вещества выглядит, как (p . V) / T = n . R = const, а его форма записи: (p1 . V1) / T1 = (p2 . V2) / T2 позволяет делать расчеты при переходе газа из одного состояния (обозначено индексом 1) в другое (с индексом 2).

Закон Авогадро позволил сделать и второй немаловажный вывод, открывший путь для экспериментального определения тех веществ, которые при переходе в газообразное состояние не разлагаются. M1 = M2 . D1, где:

  • M1 — масса молярная для первого газа;
  • M2 — масса молярная для второго газа;
  • D1 — относительная плотность первого газа, которую устанавливают по водороду или воздуху (по водороду: D1 = M1 / 2, по воздуху D1 = M1 / 29, где 2 и 29 — это молярные массы водорода и воздуха соответственно).

Пусть температура постоянна (\(T=const \) ), давление не изменяется (\(p=const \) ), объем постоянный \((V=const) \) : \((N) \) - число частиц (молекул) любого идеального газа величина неизменная. Это утверждение называется законом Авогадро.

Закон Авогадро звучит следующим образом:

В равных объемах газов (V ) при одинаковых условиях (температуре Т и давлении Р ) содержится одинаковое число молекул.

Закон Авогадро был открыт в 1811 г Амедео Авогадро . Предпосылкой для это­го стало правило кратных отношений: при одинаковых ус­ловиях объемы газов, вступа­ющих в реакцию, находятся в простых соотношениях, как 1:1, 1:2, 1:3 и т. д.

Французский ученый Ж.Л. Гей-Люссак установил закон объемных отношений:

Объемы вступающих в реакцию газов при одинаковых условиях (температуре и давлении) относятся друг к другу как простые целые числа.

Например, 1 л хлора соединяется с 1 л водорода, образуя 2 л хлороводорода; 2 л оксида серы (IV) соединяются с 1 л кислорода, образуя 1 л оксида серы (VI).

Реальные газы, как правило, являются смесью чистых газов - кислорода, водоро­да, азота, гелия и т. п. Например, воздух состоит из 77 % азота, 21 % кислорода, 1 % водорода, остальные - инертные и прочие газы. Каждый из них создает давление на стенки сосуда, в котором находится.

Парциальное давление Давление, которое в смеси газов создает каждый газ в отдельности, как будто он один занимает весь объем, называется парциальным давлением (от лат. partialis - частичный)

Нормальные условия: p = 760 мм рт. ст. или 101 325 Па , t = 0 °С или 273 К .

Следствия из закона Авогадро

Следствие 1 из закона Авогадро Один моль любого газа при одинаковых условиях занимает одинаковый объем. В частности при нормальных условиях объем одного моля идеального газа равен 22,4 л . Этот объем называют молярным объемом \(V_{\mu} \)

где \(V_{\mu} \) - молярный объем газа (размерность л/моль); \(V \) - объем вещества системы; \(n \) - количество вещества системы. Пример записи: \(V_{\mu} \) газа (н.у.) = 22,4 л/моль.

Следствие 2 из закона Авогадро Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эта величина называется относительной плотностью \(D \)

где \(m_1 \) и \(m_2 \) - молярные массы двух газообразных веществ.

Величина \(D \) определяется экспериментально как отношение масс одинаковых объемов исследуемого газа \(m_1 \) и эталонного газа с известной молекулярной массой (М2). По величинам \(D \) и \(m_2 \) можно найти молярную массу исследуемого газа: \(m_1 = D \cdot m_2 \)

Таким образом, при нормальных условиях (н.у.) молярный объем любого газа \(V_{\mu} = 22,4 \) л/моль.

Относительную плотность чаще всего вычисляют по отношению к воздуху или водороду, используя, что молярные массы водорода и воздуха известны и равны, соответственно:

\[ {\mu }_{H_2}=2\cdot {10}^{-3}\frac{кг}{моль} \]

\[ {\mu }_{vozd}=29\cdot {10}^{-3}\frac{кг}{моль} \]

Очень часто при решении задач используется то, что при нормальных условиях (н.у.) (давлении в одну атмосферу или, что тоже самое \(p={10}^5Па=760\ мм\ рт.ст,\ t=0^o C \) ) молярный объем любого идеального газа:

\[ \frac{RT}{p}=V_{\mu }=22,4\cdot {10}^{-3}\frac{м^3}{моль}=22,4\frac{л}{моль}\ . \]

Концентрацию молекул идеального газа при нормальных условиях:

\[ n_L=\frac{N_A}{V_{\mu }}=2,686754\cdot {10}^{25}м^{-3}\ , \]

называют числом Лошмидта .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Предвидеть результаты исследования, предугадать закономерность, почувствовать общие истоки - всем этим отмечено творчество большого числа экспериментаторов и учёных. Чаще всего прогноз распространяется лишь на область занятости исследователя. И мало у кого хватает смелости заняться долгосрочным прогнозированием, существенно опередив время. У итальянца Амедео Авогадро смелости было хоть отбавляй. Именно по этой причине данный учёный известен сейчас во всём мире. А закон Авогадро и по сей день используется всеми химиками и физиками планеты. В этой статье мы подробно расскажем о нём и его авторе.

Детство и учёба

Амедео Авогадро родился в Турине в 1776 году. Его отец Филиппе работал служащим в судебном ведомстве. Всего в семье было восемь детей. Все предки Амедео служили адвокатами при католической церкви. Молодой человек также не отступил от традиции и занялся юриспруденцией. К двадцати годам он уже имел степень доктора.

Со временем юридическая практика перестала увлекать Амедео. Интересы молодого человека лежали в другой сфере. Ещё в юности он посещал школу экспериментальной физики и геометрии. Тогда в будущем учёном и проснулась любовь к наукам. Из-за пробелов в знаниях Авогадро занялся самообразованием. В 25 лет Амедео всё свободное время уделял изучению математики и физики.

Научная деятельность

На первом этапе научная деятельность Амедео была посвящена изучению электрических явлений. Интерес Авогадро особо усилился после того как Вольт открыл источник электрического тока в 1800 году. Не менее интересны молодому учёному были дискуссии Вольта и Гальвани о природе электричества. Да и в целом тогда данная область была передовой в науке.

В 1803 и 1804 годах Авогадро вместе с братом Феличе представил учёным из Туринской Академии две работы, раскрывающие теории электрохимических и электрических явлений. В 1804 году Амедео стал членом-корреспондентом данной академии.

В 1806 году Авогадро устроился репетитором в Туринский лицей. А спустя три года учёный перебрался в лицей Верчелли, где преподавал математику и физику на протяжении десяти лет. В тот период Амедео прочитал много научной литературы, делая из книг полезные выписки. Он вёл их до конца жизни. Накопилось целых 75 томов по 700 страниц каждый. Содержание этих книг говорит о разносторонности интересов учёного и о том колоссальном труде, который он проделал.

Личная жизнь

Семейную жизнь Амедео устроил довольно поздно, когда его возраст уже перевалил за третий десяток. Работая в Верчелли, он встретил Анну ди Джузеппе, которая была намного моложе учёного. В этом браке родилось восемь детей. Никто из них не пошёл по стопам отца.

Закон Авогадро и его следствия

В 1808 году Гей-Люссак (в соавторстве с Гумбольдтом) сформулировал принцип объёмных отношений. Этот закон гласил, что соотношение между объёмами реагирующих газов можно выразить простыми числами. Например, 1 объём хлора, соединяясь с 1 объёмом водорода, даёт 2 объёма хлороводорода и т.п. Но данный закон ничего не давал, так как, во-первых, не было конкретного различия между понятиями корпускула, молекула, атом, а во-вторых, у учёных были разные мнения насчёт состава частиц различных газов.

В 1811 году Амедео занялся тщательным анализом результатов исследований Гей-Люссака. В итоге Авогадро понял, что закон объёмных отношений позволяет понять устройство молекулы газов. Гипотеза, которую он сформулировал, гласила: «Число молекул любого газа в одном и том же объёме всегда одинаково».

Открытие закона

Целых три года учёный продолжал экспериментировать. И в итоге появился закон Авогадро, который звучит так: «Равные объёмы газообразных веществ при одинаковой температуре и давлении содержат одинаковое количество молекул. А меру массы молекул можно определить по плотности различных газов». Например, если 1 литр кислорода содержит столько же молекул, сколько и 1 литр водорода, то отношение плотностей данных газов равно отношению массы молекул. Также учёный отметил, что молекулы в газах не всегда состоят из одиночных атомов. Допустимо наличие как разных, так и одинаковых атомов.

К сожалению, во времена Авогадро данный закон нельзя было доказать теоретически. Но он давал возможность устанавливать в экспериментах состав молекул газов и определять их массу. Давайте проследим логику подобных рассуждений. В ходе эксперимента было выявлено, что пары воды из газа, а также объёмы водорода и кислорода соотносятся в пропорции 2:1:2. Из этого факта можно сделать разные выводы. Первый: молекула воды состоит из трёх атомов, а молекулы водорода и кислорода из двух. Вполне уместен и второй вывод: молекулы воды и кислорода двухатомны, а водорода - одноатомны.

Противники гипотезы

У закона Авогадро было много противников. Отчасти это было связано с тем, что в те времена отсутствовала простая и ясная запись уравнений и формул химических реакций. Главным недоброжелателем был Йенс Берцелиус - шведский химик, имеющий непререкаемый авторитет. Он считал, что у всех атомов есть электрические заряды, а сами молекулы состоят из атомов с противоположными зарядами, которые притягиваются друг к другу. Так, у атомов водорода был положительный заряд, а у атомов кислорода - отрицательный. С этой точки зрения молекулы кислорода, состоящей из 2-х одинаково заряженных атомов, просто не существует. Но если молекулы кислорода всё же одноатомны, то в реакции азота с кислородом пропорция соотношения объёмов должна быть 1:1:1. Данное утверждение противоречит эксперименту, где из 1 литра кислорода и 1 литра азота получали 2 литра оксида азота. Именно по этой причине Берцелиус и другие химики отвергали закон Авогадро. Ведь он абсолютно не соответствовал экспериментальным данным.

Возрождение закона

До шестидесятых годов девятнадцатого столетия в химии наблюдался произвол. Причём он распространялся как на оценку молекулярных масс, так и на описание химических реакций. Об атомном составе сложных веществ было вообще много неверных представлений. Некоторые учёные даже планировали отказаться от молекулярной теории. И только в 1858 году химик из Италии по имени Канниццаро нашёл в переписке Бертолле и Ампера ссылку на закон Авогадро и следствия из него. Это упорядочило запутанную картину химии того времени. Два года спустя Канниццаро рассказал о законе Авогадро в Карлсруэ на Международном конгрессе по химии. Его доклад произвёл на учёных неизгладимое впечатление. Один из них сказал, что он как будто прозрел, все сомнения испарились, а взамен появилось чувство уверенности.

После того как закон Авогадро признали, учёные могли не только определять состав молекул газов, но и рассчитывать атомные и молекулярные массы. Эти знания помогали в расчёте массовых соотношений реагентов в различных химических реакциях. И это было очень удобно. Измеряя массу в граммах, исследователи могли оперировать молекулами.

Заключение

Много времени прошло с тех пор, как был открыт закон Авогадро, но об основоположнике молекулярной теории никто не забыл. Логика учёного была безупречной, что позже подтвердили расчёты Дж. Максвелла, основанные на кинетической теории газов, а затем и экспериментальные исследования (броуновское движение). Также было определено, сколько содержится частиц в моле каждого газа. Эта константа - 6,022.1023 была названа числом Авогадро, увековечив имя проницательного Амедео.