Расчеты по простым процентам. Наращенная сумма ссуды Определить сумму начисленных процентов наращенную сумму

Дисконтирование

Современная стоимость (Возвращаемая сумма)

Процентная ставка

Рис. 6. Логика финансовых операций

Математическое дисконтирование

Математическое дисконтирование представляет собой формальное решение задачи, обратной наращению первоначальной суммы ссуды. Задача в этом случае формулируется так: какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S при условии, что на долг начисляются проценты по ставке i ? Решив уравнение (1) относительно P , находим:

(12)

Установленная таким путем величина P является современной величиной суммы S , которая будет выплачена через n лет. Выражение 1/(1 + n∙i ) называется дисконтным множителем , который показывает современную стоимость одной денежной единицы.

Разность (S P ) можно рассматривать не только как проценты, начисляемые на P , но и как дисконт суммы S . Обозначим последний через D . Дисконт, как скидка с конечной суммы долга необязательно определяется через процентную ставку, он может быть установлен по соглашению сторон и в виде абсолютной величины для всего срока.

Рассмотрим примеры.

Пример 8.

Через год владелец векселя, выданного коммерческим банком, должен получить по нему 220 тыс. руб. Какая сумма была внесена в банк в момент приобретения векселя, если годовая ставка составляет 12%?

Дано: Решение:

S = 220 т.р. Представим задачу графически

n = 1 год

i = 12%; n = 1 г.

S = 120т.р.

дисконтирование

Используя выражение (12) получим:
тыс. руб.

Пример 9.

Ссуда должна быть погашена через год в сумме 200 тыс. руб. Кредитор попросил погасить ссуду через 270 дней после выдачи под 10% годовых. Какую сумму получит кредитор? К = 365 дн.

Дано: Решение:

S = 200 тыс. руб. Изобразим задачу графически:

n = 1г.

n 1 = 270 дн.

i = 10%

n = 365-270

S = 200т.р.

дисконтирование

n 1 = 270

n 0 = 95 дн.

n = 365

Находим количество дней, оставшихся до погашения ссуды:

n 0 = n n 1 = 365 – 270 = 95 (дн.)

Используя выражение (12) находим:

(тыс. руб.)

Банковский или коммерческий учет (учет векселей)

При учете векселя применяется банковский учет. Согласно этому методу проценты за использование ссуды в виде дисконта начисляются на сумму, подлежащую уплате в конце срока. При этом применяется учетная ставка d . (рис. 7)

Р дисконтирование (учет) S

Рис. 7

Дисконтирование с использованием простой учетной ставки

Расчетная формула для вычисления этих процентов выводится на основе следующих рассуждений.

Пусть с 1 руб. берется годовая учетная (дисконтная, авансовая) ставка d , тогда должник получает на руки сумму (1- d ) и по истечении срока должен вернуть 1 руб. То есть, если 1 руб. – это возвращаемая сумма S , то первоначальная сумма будет равна: P = S d (при условии что срок равен одному году), или в нашем случае, P = 1 – d . Если значение S , Р и n – произвольны, то

P = S S n d = S (1 – n d ), (13)

где S∙n∙d – величина дисконта, а n – срок от момента учета до даты погашения векселя. Величина (1 – n∙d ) называется дисконтным множителем при использовании учетной процентной ставки. Учет посредством учетной ставки осуществляется чаще всего при временной базе K = 360 дней, число дней ссуды берется точное (обыкновенные проценты с точным числом дней ссуды).

Для уяснения практического приложения рассмотрим дисконтный вексель. Используя номинал векселя (S ) , учетную ставку (d ) , время, оставшееся до срока погашения (t ) , вычитают дисконт (D ) – скидку с номинала, т.е. разницу между S и Р .

Затем рассчитывают выкупную (фактурную) стоимость векселя до срока погашения

(13а)

Рассмотрим пример:

Пример 10.

Владелец векселя номиналом 100 тыс. руб. и периодом обращения 105 дн., за 15 дн. до наступления срока платежа учитывает его в банке по учетной ставке 20%. Определить сумму, полученную владельцем векселя.

Дано: Решение:

S = 100 тыс. руб. Изобразим задачу графически:

Пер. обращение – 105 дн.

n = 15 дн.

Р - ? S = 100

n = 15 дн.

Используя выражение (13а) получим:

(тыс. руб.)

В отдельных случаях может возникнуть ситуация, когда совмещается начисление процентов по ставке наращения i и дисконтирование по учетной ставке d . В этом случае, полученная при учете сумма определиться как:

P` = P (1 + n i ) (1 – n` d ) (14)

S `

где P ( S ) – номинальная сумма; n – общий срок платежного обязательства; n ` - срок от момента учета до даты погашения платежа; Р` - сумма, полученная при учете обязательства.

Пример 11.

Долговое обязательство, предусматривающее уплату 400 тыс. руб. с начисленными на них 12% годовых, подлежит погашению через 90 дн. Владелец обязательства (кредитор) учел его в банке за 15 дн. до наступления срока по учетной ставке 13,5%. Полученная сумма после учета составила:

Дано: Решение:

S = 400 тыс. руб. В этой задаче номинальная стоимость

n = 90 дн. (возвращаемая сумма) принимается за

n ` = 15 дн. первоначальную: S = P (см. график).

d = 13,5%

P (S ) =400 т.р. S `

i = 12%; n = 90 дн.

d = 13,5%; n ` = 15дн.

дисконтирование

P ` -?

1. Вначале определяем наращенную сумму обязательства S ` , принимая его номинальную стоимость за первоначальную сумму:

(тыс. руб.)

2. Находим полученную после учета сумму:

(тыс. руб.)

3. Используя выражение (14) получаем ту же сумму:

(тыс. руб.)

Необходимость использования простой учетной ставки для расчета наращенной суммы возникает в случае определения номинальной стоимости векселя при выдаче ссуды. В этом случае сумма долга, проставленная в векселе, будет равна

(15)

Величина 1/(1-n d ) в этом случае является множителем наращения при использовании простой учетной ставки.

Пример 12.

Предприниматель обратился в банк за ссудой в размере 200 тыс. руб. на срок 55 дней. Банк согласен выдать указанную сумму при условии начисления процентов по простой учетной ставке, равной 20%. Найти возвращаемую сумму.

Дано: Решение:

Р = 200 тыс. руб. В этой задаче наращение производится

n = 55 дн. по простой учетной ставке.

Р = 200 S - ?

наращение

d = 20; n = 55 дн.

Используя выражение (15) получим:

тыс. руб.

Если бы сумма выдавалась под простую процентную ставку ( i ) , то наращенная сумма была бы равна тыс.руб . , т.е. наращение по учетной ставке идет быстрее и она менее выгодна должнику 206,111 < 206,304 т.е. возвращаемая сумма в первом случае будет больше.

Определение срока ссуды при использовании учетной ставки производится по формулам:


, (16)

, (17)

где n –срок ссуды в годах; t – срок ссуды в днях; k – временная база.

Рассмотрим пример:

Пример 13.

Фирме необходим кредит в 500 тыс. руб. Банк согласен на выдачу кредита при условии, что он будет возвращен в размере 600 тыс. руб. Учетная ставка 21% годовых. На какой срок банк предоставит кредит фирме? К = 365 дней

Дано: Решение:

S = 600 тыс. руб. Графическая иллюстрация задачи

Р = 500 тыс. руб.

Р = 500 т.р. S = 600 т.р.

d = 20%; n - ?

дисконтирование

При решении подобного рода задач проще воспользоваться выражением (17) , тогда срок кредита сразу получится в днях (при использовании выражения (16) срок будет выражен в долях года):

(дн.)

Величина учетной ставки рассчитывается по формулам:

, (18)

. (19)

Пример 14.

Контракт на получение ссуды в 500 тыс. руб. предусматривает возврат долга через 300 дней в сумме 600 тыс. руб. Определим примененную банком учетную ставку. К = 365 дней.

Дано: Решение:

Р = 500 тыс. руб.

S = 600 тыс. руб.

t = 300 дней

Р = 500 т.р. дисконтирование S = 600 т.р.

d = ? t = 300 дн.

По формуле (19) получим:
или
d = 20,27%

При операциях с дисконтными финансовыми инструментами учетная ставка иногда может задаваться неявно: в виде общей относительной доли уменьшения номинала или как отношение дисконтированной суммы к номиналу; тогда d находится как или

(20)

где d ` - процент скидки; t – срок до учета (срок векселя).

Пример 15.

Размер удерживаемых процентов при выдаче полугодовой ссуды составляет 20% суммы ссуды. Определим заложенную учетную ставку процентов (дисконтную ставку). К = 365

Дано: Решение:

d ` = 20%

t = 0,5 г.(180 дн.)

К = 365 дн.

d - ?

Пример 16.

Государственные краткосрочные трехмесячные векселя котируются по курсу 90. Вычислим учетную ставку. К =360.

Дано: Решение:

P / S = 0,9 скидка в нашем случае: 1 – 0,9 = 0,1

d - ? тогда:

. База для начисления сложных процентов в отличие от простых не остается постоянной – она увеличивается с каждым шагом во времени. Абсолютная сумма начисляемых процентов возрастает, и процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательное реинвестирование средств, вложенных под простые про центы на один период начисления ( running period ). Присоедине ние начисленных процентов к сумме, которая послужила базой для их начисления, часто называют капитализацией процентов.

Найдем формулу для расчета наращенной суммы при условии, что проценты начисляются и капитализируются один раз в году (годовые проценты). Для этого применяется сложная став ка наращения. Для записи формулы наращения применим те же обозначения, что и в формуле наращения по простым про центам:

P - первоначальный размер долга (ссуды, кредита, капита ла и т.д.),

S - наращенная сумма на конец срока ссуды,

п - срок, число лет наращения,

i - уровень годовой ставки процентов, представленный де сятичной дробью.

Очевидно, что в конце первого года проценты равны величине Р i , а наращенная сумма составит. К конц у второго года она достигнет величины В конце n -го года наращенная сумма будет равна

(4.1)

Процентыза этот же срокв целом таковы:

(4.2)

Часть из них поучена за счет начисления процентов на проценты. Она составляет

(4.3)

Как показано выше, рост по сложным процентам представ ляет собой процесс, соответствующий геометрической прогрессии, первый член которой равен Р , а знаменатель – . Последний член прогрессии равен наращенной сумме в конце срока ссуды.

Величину называют множителем наращения по сложным процентам. Значения этого множителя для целых чисел п приводятся в таблицах сложных процентов. Точность расчета множителя в практических расчетах определяется допустимой степенью округления наращенной суммы (до последней копейки, рубля и т.д.).

Время при наращении по сложной ставке обычно измеряет ся как АСТ/ A СТ.

Как видим, величина множителя наращения зависит от двух параметров - i и п. Следует отметить, что при большом сроке наращения даже небольшое изменение ставки заметно влияет на величину множителя. В свою очередь очень большой срок приводит к устрашающим результатам даже при небольшой процентной ставке.

Формула наращения по сложным процентам получена для годовой процентной ставки и срока, измеряемого в годах. Однако ее можно применять и при других периодах начисле ния. В этих случаях i означает ставку за один период начисления (месяц, квартал и т.д.), а n – число таких периодов. На пример, если i –ставка за полугодие, то п число полугодий и т.д.

Формулы (4.1) - (4.3) предполагают, что проценты на про центы начисляются по той же ставке, что и при начислении на основную сумму долга. Усложним условия начислений процен тов. Пусть проценты на основной долг начисляются по ставке i а проценты на проценты – по ставке В этом случае

Ряд в квадратных скобках представляет собой геометриче скую прогрессию с первым членом, равным 1, и знаменателем. В итоге имеем

(4.4)

· Пример 4.1

2. Начисление процентов в смежных календарных периодах. Вы ше при начислении процентов не принималось во внимание расположение срока начисления процентов относительно календарных периодов. Вместе с тем, часто даты начала и окончания ссуды находятся в двух периодах. Ясно, что начисленные за весь срок проценты не могут быть отнесены только к послед нему периоду. В бухгалтерском учете, при налогообложении, наконец, в анализе финансовой деятельности предприятия воз никает задача распределения начисленных процентов по периодам.

Общий срок ссуды делится на два периода n 1 и n 2 . Соответственно ,

где

· Пример 4.2

3. Переменные ставки. Формула предполагает постоянную ставку на протяжении всего срока начисления процентов. Неустойчивость кредитно-денежного рынка заставляет модернизировать “классическую” схему, например, с помощью применения плавающих ставок ( floating rate ). Естественно, что расчет на перспективу по таким ставкам весьма условен. Иное дело - расчет постфактум. В этом случае, а также тогда, когда измене ния размеров ставок фиксируются в контракте, общий множитель наращения определяется как произведение частных, т.е.

(4.5)

где - последовательные значения ставок; - периоды, в течение которых “работают” соответствующие ставки.

· Пример 4.3

4. Начисление процентов при дробном числе лет. Часто срок в го дах для начисления процентов не является целым числом. В правилах ряда коммерческих банков для некоторых операций проценты начисляются только за целое число лет или других периодов начисления. Дробная часть периода отбрасывается. В большинстве же случаев учитывается полный срок. При этом применяют два метода. Согласно первому, назовем его общим, расчет ведется по формуле:

(4.6)

Второй, сме шанный, метод предполагает начисление процентов за целое число лет по формуле сложных процентов и за дробную часть срока по формуле простых процентов:

,(4.7)

где – срок ссуды, а - целое число лет, b - дробная часть года.

Аналогичный метод применяется и в случаях, когда перио дом начисления является полугодие, квартал или месяц.

При выборе метода расчета следует иметь в виду, что мно житель наращения по смешанному методу оказывается несколько больше, чем по общему, так как для п < 1 справедли во соотношение

Наибольшая разница наблю дается при b = 1/2.

· Пример 4.4

5. Сравнение роста по сложным и простым процентам. Пусть временная база для начисленияодна и та же, уровень процентных ставок совпадает, тогда:

1) для срока меньше года простые проценты больше сложных

2) для срока больше года

3) для срока 1 год множители наращения равны друг другу

Используя коэффициент наращения по простыми сложным процентам можно определить время, необходимое для увеличенияпервоначальной суммы в n раз. Для этого необходимо, что быкоэффициенты наращениябыли равны величине n :

1) для простых процентов

2) для сложных процентов

Формулы дляудвоениякапитала имеют вид:

В условиях рыночной экономики любое взаимодействие лиц, фирм и предприятий с целью получения прибыли называется сделкой. При кредитных сделках прибыль представляет собой величину дохода от предоставления денежных средств в долг, что на практике реализуется за счет начисления процентов (процентной ставки – i). Проценты зависят от величины предоставляемой суммы, срока ссуды, условий начисления и т. д.

Важнейшее место в финансовых сделках занимает фактор времени (t). С временным фактором связан принцип неравноценности и неэквивалентности вложений. Для того чтобы определить изменения, происходящие с исходной суммой денежных средств (P), необходимо рассчитать величину дохода от предоставления денег в ссуду, вложения их в виде вклада (депозита), инвестированием их в ценные бумаги и т. д.

Процесс увеличения суммы денег в связи с начислением процентов (i) называют наращением, или ростом первоначальной суммы (P). Таким образом, изменение первоначальной стоимости под влиянием двух факторов: процентной ставки и времени называется наращенной стоимостью (S).

Наращенная стоимость может определяться по схеме простых и сложных процентов. Простые проценты используются в случае, когда наращенная сумма определяется по отношению к неизменной базе, то есть начисленные проценты погашаются (выплачиваются) сразу после начисления (таким образом, первоначальная сумма не меняется); в случае, когда исходная сумма (первоначальная) меняется во временном интервале, имеют дело со сложными процентами.

При начислении простых процентов наращенная сумма определяется по формуле


S = P (1 + i t), (1)

где S – наращенная сумма (стоимость), руб.; P – первоначальная сумма (стоимость), руб.; i – процентная ставка, выраженная в коэффициенте; t – период начисления процентов.

S = 10 000 (1+ 0,13 · 1) = 11 300, руб. (сумма погашения кредита);

ΔР = 11 300 – 10 000 = 1 300, руб. (сумма начисленных процентов).

Определить сумму погашения долга при условии ежегодной выплаты процентов, если банком выдана ссуда в сумме 50 000 руб. на 2 года, при ставке – 16 % годовых.

S = 50 000 (1+ 0,16 · 2) = 66 000, руб.

Таким образом, начисление простых процентов осуществляется в случае, когда начисленные проценты не накапливаются на сумму основного долга, а периодически выплачиваются, например, раз в год, полугодие, в квартал, в месяц и т. д., что определяется условиями кредитного договора. Также на практике встречаются случаи, когда расчеты производятся за более короткие периоды, в частности на однодневной основе.

В случае, когда срок ссуды (вклада и т. д.) менее одного года, в расчетах необходимо скорректировать заданную процентную ставку в зависимости от временного интервала. Например, можно представить период начисления процентов (t) в виде отношения , где q – число дней (месяцев, кварталов, полугодий и т. д.) ссуды; k – число дней (месяцев, кварталов, полугодий и т. д.) в году.

Таким образом, формула (1) изменяется и имеет следующий вид:

S = P (1 + i ). (2)

Банк принимает вклады на срочный депозит на срок 3 месяца под 11 % годовых. Рассчитать доход клиента при вложении 100 000 руб. на указанный срок.

S = 100 000 (1+ 0,11 · ) = 102 749,9, руб.;

ΔР = 102 749,9 – 100 000 = 2 749,9, руб.

В зависимости от количества дней в году возможны различные варианты расчетов. В случае, когда за базу измерения времени берут год, условно состоящий из 360 дней (12 месяцев по 30 дней), исчисляют обыкновенные, или коммерческие проценты. Когда за базу берут действительное число дней в году (365 или 366 – в високосном году), говорят о точных процентах.

При определении числа дней пользования ссудой также применяется два подхода: точный и обыкновенный. В первом случае подсчитывается фактическое число дней между двумя датами, во втором – месяц принимается равным 30 дням. Как в первом, так и во втором случае, день выдачи и день погашения считаются за один день. Также существуют случаи, когда в исчислении применяется количество расчетных или рабочих банковских дней, число которых в месяц составляет 24 дня.

Таким образом, выделяют четыре варианта расчета:

1) обыкновенные проценты с точным числом дней ссуды;

2) обыкновенные проценты с приближенным числом дней ссуды;

3) точные проценты с приближенным числом дней ссуды;

4) точные проценты с банковским числом рабочих дней.

При этом необходимо учесть, что на практике день выдачи и день погашения ссуды (депозита) принимают за один день.

Ссуда выдана в размере 20 000 руб. на срок с 10.01.06 до 15.06.06 под 14 % годовых. Определить сумму погашения ссуды.

1. Обыкновенные проценты с точным числом дней ссуды:

156=21+28+31+30+31+15;

S = 20 000 (1+0,14 · ) =21 213,3, руб.

2. Обыкновенные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 205,6, руб.

3. Точные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 189,0, руб.

4. Точные проценты с банковским числом рабочих дней:

S = 20 000 (1+0,14 · ) =21 516,7, руб.

Данные для расчета количества дней в периоде представлены в прил. 1, 2.

Как сказано выше, кроме начисления простых процентов применяется сложное начисление, при котором проценты начисляются несколько раз за период и не выплачиваются, а накапливаются на сумму основного долга. Этот механизм особенно эффективен при среднесрочных и долгосрочных кредитах.

После первого года (периода) наращенная сумма определяется по формуле (1), где i будет являться годовой ставкой сложных процентов. После двух лет (периодов) наращенная сумма S 2 составит:

S 2 = S 1 (1 + it) = P (1 + it) · (1 + it) = P (1 + it) 2 .

Таким образом, при начислении сложных процентов (после n лет (периодов) наращения) наращенная сумма определяется по формуле

S = P (1 + i t) n , (3)

где i – ставка сложных процентов, выраженная в коэффициенте; n – число начислений сложных процентов за весь период.

Коэффициент наращения в данном случае рассчитывается по формуле


Кн = (1 + i t) n , (4)

где Кн – коэффициент наращения первоначальной стоимости, ед.

Вкладчик имеет возможность поместить денежные средства в размере 75 000 руб. на депозит в коммерческий банк на 3 года под 10 % годовых.

Определить сумму начисленных процентов к концу срока вклада, при начислении сложных процентов.

S = 75 000 (1+ 0,1 · 1) 3 = 99 825, руб.

ΔР = 24 825, руб.

Таким образом, коэффициент наращения составит:

Кн = (1+ 0,1 · 1) 3 = 1,331

Следовательно, коэффициент наращения показывает, во сколько раз увеличилась первоначальная сумма при заданных условиях.

Доля расчетов с использованием сложных процентов в финансовой практике достаточно велика. Расчеты по правилу сложных процентов часто называют начисление процентов на проценты, а процедуру присоединения начисленных процентов – их реинвестированием или капитализацией.


Рис. 1. Динамика увеличения денежных средств при начислении простых и сложных процентов

Из-за постоянного роста базы вследствие реинвестирования процентов рост первоначальной суммы денег осуществляется с ускорением, что наглядно представлено на рис. 1.

В финансовой практике обычно проценты начисляются несколько раз в году. Если проценты начисляются и присоединяются чаще (m раз в год), то имеет место m-кратное начисление процентов. В такой ситуации в условиях финансовой сделки не оговаривают ставку за период, поэтому в финансовых договорах фиксируется годовая ставка процентов i, на основе которой исчисляют процентную ставку за период (). При этом годовую ставку называют номинальной, она служит основой для определения той ставки, по которой начисляются проценты в каждом периоде, а фактически применяемую в этом случае ставку (() mn) – эффективной, которая характеризует полный эффект (доход) операции с учетом внутригодовой капитализации.

Наращенная сумма по схеме эффективных сложных процентов определяется по формуле

S = P (1+ ) mn , (5)

где i – годовая номинальная ставка, %; (1+ ) mn – коэффициент наращения эффективной ставки; m – число случаев начисления процентов за год; mn – число случаев начисления процентов за период.

S = 20 000 (1+ ) 4·1 = 22 950, руб.

Следует отметить, что при периоде, равным 1 году, число случаев начисления процентов за год будет соответствовать числу случаев начисления процентов за весь период. Если, период составляет более 1 года, тогда n (см. формулу (3)) – будет соответствовать этому значению.

S = 20 000 (1+ ) 4·3 = 31 279, 1 , руб.

Начисление сложных процентов также применяется не только в случаях исчисления возросшей на проценты суммы задолженности, но и при неоднократном учете ценных бумаг, определении арендной платы при лизинговом обслуживании, определении изменения стоимости денег под влиянием инфляции и т. д.

Как говорилось выше, ставку, которая измеряет относительный доход, полученный в целом за период, называют эффективной. Вычисление эффективной процентной ставки применяется для определения реальной доходности финансовых операций. Эта доходность определяется соответствующей эффективной процентной ставкой.

I эф = (1+ ) mn – 1 . (6)

Кредитная организация начисляет проценты на срочный вклад, исходя из номинальной ставки 10 % годовых. Определить эффективную ставку при ежедневном начислении сложных процентов.

i = (1+ ) 365 – 1 = 0,115156, т. е. 11 %.

Реальный доход вкладчика на 1 руб. вложенных средств составит не 10 коп. (из условия), а 11 коп. Таким образом, эффективная процентная ставка по депозиту выше номинальной.

Банк в конце года выплачивает по вкладам 10% годовых. Какова реальная доходность вкладов при начислении процентов: а) ежеквартально; б) по полугодиям.

а) i = (1+ ) 4 – 1 = 0,1038, т. е. 10,38 %;

б) i = (1+ ) 2 – 1 = 0,1025, т. е. 10,25 %.

Расчет показывает, что разница между ставками незначительна, однако начисление 10 % годовых ежеквартально выгодней для вкладчика.

Расчет эффективной процентной ставки в финансовой практике позволяет субъектам финансовых отношений ориентироваться в предложениях различных банков и выбрать наиболее приемлемый вариант вложения средств.

В кредитных соглашениях иногда предусматривается изменение во времени процентной ставки. Это вызвано изменением контрактных условий, предоставлением льгот, предъявлением штрафных санкций, а также изменением общих условий совершаемых сделок, в частности, изменение процентной ставки во времени (как правило, в сторону увеличения) связано с предотвращением банковских рисков, возможных в результате изменения экономической ситуации в стране, роста цен, обесценения национальной валюты и т. д.

Расчет наращенной суммы при изменении процентной ставки во времени может осуществляться как начислением простых процентов, так и сложных. Схема начисления процентов указывается в финансовом соглашении и зависит от срока, суммы и условий операции.

Пусть процентная ставка меняется по годам. Первые n 1 лет она будет равна i 1 , n 2 – i 2 и т. д. При начислении на первоначальную сумму простых процентов необходимо сложить процентные ставки i 1 , i 2 , i n , а при сложных – найти их произведение.

При начислении простых процентов применяется формула

S = P (1+i 1 t 1 + i 2 t 2 + i 3 t 3 + i n t n) , (7)

где i n – ставка простых процентов; t n – продолжительность периода начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты выплачиваются ежегодно.

S = 10 000 (1+0,10 · 1 +0,105 · 1 + 0,11 · 1)=13 150, руб.;

ΔР = 3 150, руб.

При начислении сложных процентов применяется формула

S = P(1+i 1 t 1)·(1+ i 2 t 2)·(1+ i 3 t 3)·(1+ i n t n) (8)

где i n – ставка сложных процентов; t n – продолжительность периода ее начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты капитализируются.

S = 10 000 (1+0,10 · 1)·(1 +0,105 · 1)·(1 + 0,11 · 1)= 13 492, 05, руб.


Приведенные примеры подтверждают тот факт, что начисление простых процентов связано с определением наращенной суммы по отношению к неизменной базе, т. е. каждый год (период) проценты начисляются на одну и ту же первоначальную стоимость. Если рассмотреть пример 10, то в этом случае наращенная стоимость составит:

– за первый год: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

ΔР 1 = 1 000, руб.;

– за второй год: S 2 = 10 000 (1+0,105 · 1) = 11 050, руб.;

ΔР 2 = 1 050, руб.;

– за третий год: S 3 = 10 000 (1+0,11 · 1) = 11 100, руб.;

ΔР 3 = 1 100, руб.

Таким образом, сумма процентов за 3 года составит:

ΔР = 1 000+1 050+1 100 = 3 150, руб. (см. пример 10).

В случае начисления сложных процентов, исходная сумма меняется после каждого начисления, так как проценты не выплачиваются, а накапливаются на основную сумму, т. е. происходит начисление процентов на проценты. Рассмотрим пример 11:

– в первом году: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

– во втором году: S 2 = 11000 (1+0,105 · 1) = 12 100, руб.;

– в третьем году: S 3 = 12100 (1+0,11 · 1) = 13 431, руб.

Таким образом, сумма процентов за 3 года составит: i 3 = 3 431, руб. (см. пример 10).

При разработке условий контрактов или их анализе иногда возникает необходимость в решении обратных задач – определение срока операции или уровня процентной ставки.

Формулы для расчета продолжительности ссуды в годах, днях и т. д. можно рассчитать, преобразуя формулы (1) и (5).

Срок ссуды (вклада):

t = · 365 . (9)

Определить на какой срок вкладчику поместить 10 000 руб. на депозит при начислении простых процентов по ставке 10 % годовых, чтобы получить 12 000 руб.

t = () · 365 = 730 дней (2 года).

Клиент имеет возможность вложить в банк 50 000 руб. на полгода. Определить процентную ставку, обеспечивающую доход клиента в сумме 2 000 руб.


t = () = 0,08 = 8 % годовых

Аналогично определяется необходимый срок окончания финансовой операции и ее протяженность, либо размер требуемой процентной ставки при начислении сложных процентов.

Для упрощения расчетов значения коэффициента (множитель) наращения представлены в прил. 3.

Обычная годовая рента

Пусть в конце каждого года в течение n лет на расчетный счет вносится по R рублей, проценты начисляются один раз в года по ставке i . В этом случае первый взнос к концу срока ренты возрастет до величины R (1+ i ) n -1 , так как на сумму R проценты начислялись в течение n -1 года. Второй взнос увеличится до R (1+ i ) n -2 и т.д. На последний взнос проценты не начисляются. Таким образом, в конце срока ренты ее наращенная сумма будет равна сумме членов геометрической прогрессии

S=R+R(1+i)+R(1+i) 2 +. . . + R(1+i) n-1 ,

в которой первый член равен R , знаменатель (1+ i ) , число членов n . Эта сумма равна

, (1.1)

где

(1.2)

и называется коэффициентом наращения ренты . Он зависит только от срока ренты n и уровня процентной ставки i . Поэтому его значения могут быть представлены в таблице с двумя входами.

Пример

В течение 3 лет на расчетный счет в конце каждого года поступает по 10 млн. руб., на которые начисляются проценты по сложной годовой ставке 10%. Требуется определить сумму на расчетном счете к концу указанного срока.

Решение

.

Годовая рента, начисление процентов m раз в году

Посмотрим как усложнится формула, если предположить теперь, что платежи делают один раз в конце года, а проценты начисляют m раз в году. Это означает, что применяется каждый раз ставка j / m , где j - номинальная ставка процентов. Тогда члены ренты с начисленными до конца срока процентами имеют вид

R(1+j/m) m(n-1) , R(1+j/m) m(n-2) , . . . , R.

Если прочитать предыдущую строку справа налево, то нетрудно увидеть, что перед нами опять геометрическая прогрессия, первым членом которой является R , знаменателем (1+ j / m ) m , а число членов n . Сумма членов этой прогрессии и будет наращенной суммой ренты. Она равна

. (1.3)

Рента p -срочная, m =1

Найдем наращенную сумму при условии, что рента выплачивается p раз в году равными платежами, а проценты начисляются один раз в конце года. Если R - годовая сумма платежей, то размер отдельного платежа равен R / p . Тогда последовательность платежей с начисленными до конца срока процентами также представляет собой геометрическую прогрессию, записанную в обратном порядке,

,

у которой первый член R / p , знаменатель (1+ i ) 1/ p , общее число членов np . Тогда наращенная сумма рассматриваемой ренты равна сумме членов этой геометрической прогрессии

, (1.4)

где

(1.5)

коэффициент наращения p -срочной ренты при m =1 .

Рента p -срочная, p = m

В контрактах часто начисление процентов и поступление платежа совпадают во времени. Таким образом число платежей p в году и число начислений процентов m совпадают, т.е. p = m . Тогда для получения формулы расчета наращенной суммы можно воспользоваться аналогией с годовой рентой и одноразовым начислением процентов в конце года, для которой

.

Различие будет лишь в том, что все параметры теперь характеризуют ставку и платеж за период, а не за год.

Таким образом получаем

. (1.6)

Рента p -срочная, p ³ 1, m ³ 1

Это самый общий случай p -срочной ренты с начислением процентов m раз в году, причем, возможно p ³ m .

Первый член ренты R / p , уплаченный спустя 1/ p года после начала, составит к концу срока вместе с начисленными на него процентами

.

Второй член ренты к концу срока возрастет до

и т.д. Последний член этой записанной в обратном порядке геометрической прогрессии равен R / p , ее знаменатель (1+ j / m ) m / p , число членов nm .

В результате получаем наращенную сумму

. (1.7)

Отметим, что из нее легко получить все рассмотренные выше частные случаи, задавая соответствующие значения p и m .

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов .

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов:
S = Р*(1+i)^n
где S - наращенная сумма,
i - годовая ставка,
n - срок ссуды в годах,
(1+ i)^n - множитель наращения.

В рассмотренном выше случае капитализация производится 1 раз в год.
При капитализации m раз в год формула наращения для сложных процентов выглядит так:
S = Р*(1+i/m)^(n*m)
i/m – это ставка за период.
На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу : Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формулами
Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.
В файле примера это реализовано на листе Постоянная ставка .

За первый период будут начислены проценты в сумме =20000*(15%/12) , т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.
При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Способ 2. Вычисление с помощью формулы Наращенных процентов
Подставим в формулу наращенной суммы S = Р*(1+i)^n значения из задачи.
S = 20000*(1+15%/12)^12
Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).
Другой вариант записи формулы – через функцию СТЕПЕНЬ()
=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().
Функция БС() позволяет определить инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае . Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание . В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов БЗРАСПИС() .

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i)^n, получим:
I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1)
Результат: 114 351,25р.
Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера ).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится?
Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание . Об эффективной ставке процентов .

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.
Рассмотрим 2 вида учета: математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i)^n
Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.
Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S - P называется дисконтом.

Пример . Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых.
Другими словами, известно:
n = 7 лет,
S = 2 000 000 руб.,
i = 15% .

Решение. P = 2000000/(1+15%)^7
Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)
Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле:
Р = S*(1- dсл)^n
где dcл - сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i)^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл)^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год .